Limit Theorems for Tapered Toeplitz Quadratic Functionals of Continuous-time Gaussian Stationary Processes

被引:0
作者
M. S. Ginovyan
A. A. Sahakyan
机构
[1] Boston University,
[2] Yerevan State University,undefined
来源
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) | 2019年 / 54卷
关键词
Stationary Gaussian process; spectral density; tapered Toeplitz type quadratic functional; central limit theorem; 60G10; 60F05; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
Let {X(t), t ∈ ℝ} be a centered real-valued stationary Gaussian process with spectral density f. The paper considers a question concerning asymptotic distribution of tapered Toeplitz type quadratic functional QTh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T^h$$\end{document} of the process X(t), generated by an integrable even function g and a taper function h. Sufficient conditions in terms of functions f, g and h ensuring central limit theorems for standard normalized quadratic functionals QTh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T^h$$\end{document} are obtained, extending the results of Ginovyan and Sahakyan (Probability Theory and Related Fields 138, 551–579, 2007) to the tapered case and sharpening the results of Ginovyan and Sahakyan (Electronic Journal of Statistics 13, 255–283, 2019) for the Gaussian case.
引用
收藏
页码:222 / 239
页数:17
相关论文
共 46 条
[1]  
Avram F(1988)On bilinear forms in Gaussian random variables and Toeplitz matrices Probab. Th. Rel. Fields 79 37-45
[2]  
Avram F(2010)On a Szegö type limit theorem, the Hö lder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields ESAIM: Probability and Statistics 14 210-255
[3]  
Leonenko N N(2010)Harmonic analysis tools for statistical inference in the spectral domain Dependence in Probability and Statistics 200 59-70
[4]  
Sakhno L(2015)Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes Statistics and Probability Letters 104 58-67
[5]  
Avram F(2016)Limit theorems for quadratic forms of Levy-driven continuoustime linear processes Stochast. Process. Appl. 126 1036-1065
[6]  
Leonenko N N(1997)Large deviations for quadratic functionals of Gaussian processes J. Th. Probab. 10 307-332
[7]  
Sakhno L(1983)Spectral analysis with tapered data J. Time Ser. Anal. 4 163-174
[8]  
Bai S(1985)A functional limit theorem for tapered empirical spectral functions Stoch. Process. Appl. 19 135-149
[9]  
Ginovyan M S(1987)Edge effects and efficient parameter estimation for stationary random fields Biometrika 74 877-882
[10]  
Taqqu M S(1996)Central and non central limit theorems for strongly dependent stationary Gaussian field Rebrape 10 205-223