Time-periodic solutions for 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion

被引:0
作者
Chengfeng Sun
Fang Zhang
Hui Liu
Qingkun Xiao
机构
[1] Nanjing University of Finance and Economics,School of Applied Mathematics
[2] Qufu Normal University,School of Mathematical Sciences
[3] Nanjing Agricultural University,College of Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
MHD equations; Horizontal dissipation and magnetic diffusion; Time-periodic solutions; 35B45; 35B65; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The 2D magnetohydrodynamics equations with horizontal dissipation and horizontal magnetic diffusion are considered. The classical solution in Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^k$$\end{document}(k≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k\ge 2)$$\end{document} has been obtained; due to partial dissipation and strong nonlinearity, the global well-posedness of weak solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} is still unknown. In this paper, by combining classic Galerkin’s method with Brouwer’s fixed point theorem, existence of time-periodic solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} with small initial values is obtained.
引用
收藏
相关论文
共 50 条
  • [41] Global well-posedness for axisymmetric MHD equations with vertical dissipation and vertical magnetic diffusion
    Wang, Peng
    Guo, Zhengguang
    NONLINEARITY, 2022, 35 (05) : 2147 - 2174
  • [42] Sharp time decay rates of H1 weak solutions for the 2D MHD equations with linear damping velocity
    Ye, Hailong
    Jia, Yan
    Dong, Bo-Qing
    NONLINEARITY, 2020, 33 (09) : 4857 - 4877
  • [43] Time-periodic solutions of the primitive equations of large-scale moist atmosphere: existence and stability
    Hsia, Chun-Hsiung
    Shiue, Ming-Cheng
    APPLICABLE ANALYSIS, 2015, 94 (09) : 1926 - 1963
  • [44] A regularity criterion for the 2D MHD and viscoelastic fluid equations
    Ye, Zhuan
    ANNALES POLONICI MATHEMATICI, 2015, 114 (02) : 123 - 131
  • [45] The 2D magneto-micropolar equations with partial dissipation
    Regmi, Dipendra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (12) : 4305 - 4317
  • [46] Stability for a system of the 2D magnetohydrodynamic equations with partial dissipation
    Ji, Ruihong
    Lin, Hongxia
    Wu, Jiahong
    Yan, Li
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 244 - 249
  • [47] Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion
    Ren, Xiaoxia
    Wu, Jiahong
    Xiang, Zhaoyin
    Zhang, Zhifei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (02) : 503 - 541
  • [48] The global well-posedness for the 2D Leray-α MHD equations with zero magnetic diffusivity
    Qiong Lei Chen
    Acta Mathematica Sinica, English Series, 2016, 32 : 1145 - 1158
  • [49] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Qionglei Chen
    Xiaoxia Ren
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [50] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Chen, Qionglei
    Ren, Xiaoxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):