Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity

被引:0
作者
Wenjie Gao
Bin Guo
机构
[1] Jilin University,State Key Laboratory of Automotive Dynamic Simulation
[2] Jilin University,Institute of Mathematics
来源
Annali di Matematica Pura ed Applicata | 2012年 / 191卷
关键词
Nonlinear parabolic equations; (; , ; )-Laplacian operator; Localization of solutions; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the existence and uniqueness of weak solutions of the initial Neumann problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{t}={\rm div}(|\nabla u|^{p(x,t)-2}\nabla u+\vec{F}(x,t))}$$\end{document}. First, the authors construct suitable function spaces to which the solution belongs and then applies Galerkin’s approximation technique to prove the existence of weak solutions with necessary uniform estimates and a compactness argument. Second, the authors obtain the properties of extinction in finite time of weak solutions under suitable conditions by proving some energy estimates and applying a comparison principle.
引用
收藏
页码:551 / 562
页数:11
相关论文
共 27 条
  • [1] Su N.(2000)Extinction in finite time of solutions to degenerate parabolic equations with nonlinear boundary conditions J. Math. Anal. Appl. 246 503-519
  • [2] Andreucci D.(1999)A Fujita type result for a degenerate Neumann in domains with noncompact boundary J. Math. Anal. Appl. 231 543-567
  • [3] Tedeev A.F.(1987)Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations Russian. Math. Surv. 42 169-222
  • [4] Kalashnikov A.S.(2009)Anisotropic parabolic equations with variable nonlinearity Pub. Math. 53 355-399
  • [5] Antontsev S.N.(2007)Parabolic equations with anisotropic nonstandard growth conditions Int. Ser. Numer. Math. 154 33-44
  • [6] Shmarev S.I.(2010)On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting J. Math. Pures Appliques 93 132-148
  • [7] Antontsev S.N.(2010)Eigenvalue problems for anisotropic elliptic equations: an Orlicz–Sobolev setting Nonlinear Anal. TMA. 73 3239-3253
  • [8] Shmarev S.I.(2006)Variable exponent, linear growth functionals in image restoration SIAM J. Appl. Math. 66 1383-1406
  • [9] Mihailescu M.(2008)New diffusion models in image processing Comput. Math. Appl. 56 874-882
  • [10] Radulescu V.(2011)Study of weak solutions for parabolic equations with nonstandard growth conditions J. Math. Anal. Appl. 374 374-384