This study introduces a novel technique for detecting ascorbic acid (AA) using graphene oxide (GO). As a vital compound in nutrition and healthcare, precise sensing is imperative. Our approach leverages GO's unique properties, capitalizing on its interactions with AA as a reducing agent to establish a robust sensing platform. The UV-Visible spectra of GO revealed distinct absorption peak shifts corresponding to varying AA concentrations. This shift, directly proportional to AA concentration, offers a quantifiable parameter for precise sensing. The observed shift is attributed to AA-induced reduction of GO, restoring pi-conjugation within the graphene structure. The US Department of Health and Human Services specifies that the vitamin C amount in our body ranges from 300 mg to 2 ( National Institutes of Health (NIH) Office of Dietary Supplements (ODS) US Department of Health and Human Services, Vitamin C Fact Sheet for Health Professionals, https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/), which falls within the sensing range achieved using UV-Visible spectroscopy. The method prioritizes achieving sensitivity within the specific range, negating the need for excessively high sensitivity. In summary, our innovative GO-based approach provides a suitable method for ascorbic acid sensing with wide-ranging applications in clinical diagnostics, food quality control, and environmental monitoring.