Let T be a complex torus and ET a holomorphic principal T-bundle over a connected complex manifold M. We prove that the total space of ET admits a Kähler structure if and only if M admits a Kähler structure and ET admits a flat holomorphic connection whose monodromy preserves a Kähler form on T. If ET admits a Kähler structure, then \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ H* (E_T ,\user2{\mathbb{C}}) $$
\end{document} is isomorphic to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ H* (M,\user2{\mathbb{C})} \otimes _{\user2{\mathbb{C}}} H* (T,\user2{\mathbb{C}}) $$
\end{document}.