On kinks and other travelling-wave solutions of a modified sine-Gordon equation

被引:0
|
作者
Gaetano Fiore
Gabriele Guerriero
Alfonso Maio
Enrico Mazziotti
机构
[1] Università “Federico II”,Dipartimento di Matematica e Applicazioni
[2] I.N.F.N.,undefined
[3] Sezione di Napoli,undefined
[4] Complesso MSA,undefined
来源
Meccanica | 2015年 / 50卷
关键词
Josephson junctions; Dissipative sine-Gordon equation ; Kinks; Travelling-waves solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We give an exhaustive, non-perturbative classification of exact travelling-wave solutions of a perturbed sine-Gordon equation (on the real line or on the circle) which is used to describe the Josephson effect in the theory of superconductors and other remarkable physical phenomena. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. On the real line candidate orbitally stable solutions with bounded energy density are either the constant one, or of kink (i.e. soliton) type, or of array-of-kinks type, or of “half-array-of-kinks” type. While the first three have unperturbed analogs, the last type is essentially new. We also propose a convergent method of successive approximations of the (anti)kink solution based on a careful application of the fixed point theorem.
引用
收藏
页码:1989 / 2006
页数:17
相关论文
共 50 条
  • [21] POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION
    BEUTLER, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3098 - 3109
  • [22] Exact solutions to the sine-Gordon equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [23] On a class of solutions of the sine-Gordon equation
    Kovalyov, Mikhail
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
  • [24] Travelling waves in a singularly perturbed sine-Gordon equation
    Derks, G
    Doelman, A
    van Gils, SA
    Visser, T
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (1-2) : 40 - 70
  • [25] Stationary multi-kinks in the discrete sine-Gordon equation
    Parker, Ross
    Kevrekidis, P. G.
    Aceves, Alejandro
    NONLINEARITY, 2022, 35 (02) : 1036 - 1060
  • [26] Evolution of sine-Gordon equation kinks in the presence of spatial perturbations
    Ekomasov, E. G.
    Shabalin, M. A.
    Azamatov, Sh. A.
    Buharmetov, A. F.
    FUNCTIONAL MATERIALS, 2006, 13 (03): : 443 - 446
  • [27] Wobbling double sine-Gordon kinks
    Campos, Joao G. F.
    Mohammadi, Azadeh
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [28] Wobbling double sine-Gordon kinks
    João G. F. Campos
    Azadeh Mohammadi
    Journal of High Energy Physics, 2021
  • [29] Scattering of the double sine-Gordon kinks
    Vakhid A. Gani
    Aliakbar Moradi Marjaneh
    Alidad Askari
    Ekaterina Belendryasova
    Danial Saadatmand
    The European Physical Journal C, 2018, 78
  • [30] Scattering of the double sine-Gordon kinks
    Gani, Vakhid A.
    Marjaneh, Aliakbar Moradi
    Askari, Alidad
    Belendryasova, Ekaterina
    Saadatmand, Danial
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (04):