On kinks and other travelling-wave solutions of a modified sine-Gordon equation

被引:0
|
作者
Gaetano Fiore
Gabriele Guerriero
Alfonso Maio
Enrico Mazziotti
机构
[1] Università “Federico II”,Dipartimento di Matematica e Applicazioni
[2] I.N.F.N.,undefined
[3] Sezione di Napoli,undefined
[4] Complesso MSA,undefined
来源
Meccanica | 2015年 / 50卷
关键词
Josephson junctions; Dissipative sine-Gordon equation ; Kinks; Travelling-waves solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We give an exhaustive, non-perturbative classification of exact travelling-wave solutions of a perturbed sine-Gordon equation (on the real line or on the circle) which is used to describe the Josephson effect in the theory of superconductors and other remarkable physical phenomena. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. On the real line candidate orbitally stable solutions with bounded energy density are either the constant one, or of kink (i.e. soliton) type, or of array-of-kinks type, or of “half-array-of-kinks” type. While the first three have unperturbed analogs, the last type is essentially new. We also propose a convergent method of successive approximations of the (anti)kink solution based on a careful application of the fixed point theorem.
引用
收藏
页码:1989 / 2006
页数:17
相关论文
共 50 条
  • [1] On kinks and other travelling-wave solutions of a modified sine-Gordon equation
    Fiore, Gaetano
    Guerriero, Gabriele
    Maio, Alfonso
    Mazziotti, Enrico
    MECCANICA, 2015, 50 (08) : 1989 - 2006
  • [2] THE SPECTRUM OF TRAVELLING WAVE SOLUTIONS TO THE SINE-GORDON EQUATION
    Jones, Christopher K. R. T.
    Marangell, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05): : 925 - 937
  • [3] New Travelling Wave Solutions for Sine-Gordon Equation
    Sun, Yunchuan
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] Travelling wave solutions of triple Sine-Gordon equation
    Liu, CS
    CHINESE PHYSICS LETTERS, 2004, 21 (12) : 2369 - 2371
  • [5] Bifurcations of travelling wave solutions for a general Sine-Gordon equation
    Meng, Q
    He, B
    Long, Y
    Rui, WG
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 483 - 489
  • [6] Travelling wave solutions for sine-Gordon prototypes
    Zheng, YG
    Liu, ZR
    Liu, YR
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2001, 2 (01) : 73 - 77
  • [7] New exact travelling wave solutions of the discrete sine-Gordon equation
    Dai, CQ
    Yang, Q
    Zhang, JF
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (10): : 635 - 639
  • [8] Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction
    Kreiner, Carl-Friedrich
    Zimmer, Johannes
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3146 - 3158
  • [9] Solitary wave solutions of triple sine-Gordon equation
    Yang, JS
    Lou, SY
    CHINESE PHYSICS LETTERS, 2004, 21 (04) : 608 - 611
  • [10] π-Kinks in the parametrically driven sine-Gordon equation and applications
    Mitkov, I
    Zharnitsky, V
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 123 (1-4) : 301 - 307