L2 Forms and Ricci Flow with Bounded Curvature on Complete Non-Compact Manifolds

被引:0
作者
Li Ma
Yang Yang
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Geometriae Dedicata | 2006年 / 119卷
关键词
Ricci flow; Forms; Monotonicity; 53Cxx;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the evolution of L2 one forms under Ricci flow with bounded curvature on a non-compact Rimennian manifold. We show on such a manifold that the L2 norm of a smooth one form is non-increasing along the Ricci flow with bounded curvature. The L∞ norm is showed to have monotonicity property too. Then we use L∞ cohomology of one forms with compact support to study the singularity model for the Ricci flow on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1\times\mathbb{R}^{n-1}$$\end{document}.
引用
收藏
页码:151 / 158
页数:7
相关论文
共 19 条
  • [1] Anderson M.(1985) Harmonic forms and a conjecture of Dodzuik–Singer Bull. Amer. Math. Soc. 13 163-165
  • [2] Bartnik R.(1986)The mass of an asymptotically flat manifold Comm. Pure Appl. Math. 39 661-693
  • [3] Cheeger J.(1986)-cohomology and group cohomology Topology 25 189-215
  • [4] Gromov M.(2005)Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman J. Amer. Math. Soc. 18 561-569
  • [5] Colding T.H.(1982) Harmonic forms on complete manifold Ann. Math. Stud. 102 191-302
  • [6] Minicozzi W.P.(1994)Riemannian manifolds of faster-than-quadratic curvature decay Internat. Math. Res. Notices 9 366-377
  • [7] Dodziuk J.(1991)Kahler hyperbolicity and J. Differential Geom. 33 263-292
  • [8] Greene R.(1995)-Hodge theory Surveys Differential Geom. 2 7-136
  • [9] Petersen P.(2003)The formation of singularities in the Ricci flow Math. Res. Lett. 10 161-168
  • [10] Zhu S.(1986)A lower bound for the diameter of solutions to the Ricci flow with nonzero Acta Math. 156 139-168