Foundation and large language models: fundamentals, challenges, opportunities, and social impacts

被引:0
|
作者
Devon Myers
Rami Mohawesh
Venkata Ishwarya Chellaboina
Anantha Lakshmi Sathvik
Praveen Venkatesh
Yi-Hui Ho
Hanna Henshaw
Muna Alhawawreh
David Berdik
Yaser Jararweh
机构
[1] Duquesne University,
[2] Al Ain University,undefined
[3] Deakin University,undefined
来源
Cluster Computing | 2024年 / 27卷
关键词
Natural language processing; Foundation models; Large language models; Advanced pre-trained models; Artificial intelligence; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Foundation and Large Language Models (FLLMs) are models that are trained using a massive amount of data with the intent to perform a variety of downstream tasks. FLLMs are very promising drivers for different domains, such as Natural Language Processing (NLP) and other AI-related applications. These models emerged as a result of the AI paradigm shift, involving the use of pre-trained language models (PLMs) and extensive data to train transformer models. FLLMs have also demonstrated impressive proficiency in addressing a wide range of NLP applications, including language generation, summarization, comprehension, complex reasoning, and question answering, among others. In recent years, there has been unprecedented interest in FLLMs-related research, driven by contributions from both academic institutions and industry players. Notably, the development of ChatGPT, a highly capable AI chatbot built around FLLMs concepts, has garnered considerable interest from various segments of society. The technological advancement of large language models (LLMs) has had a significant influence on the broader artificial intelligence (AI) community, potentially transforming the processes involved in the development and use of AI systems. Our study provides a comprehensive survey of existing resources related to the development of FLLMs and addresses current concerns, challenges and social impacts. Moreover, we emphasize on the current research gaps and potential future directions in this emerging and promising field.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [1] Foundation and large language models: fundamentals, challenges, opportunities, and social impacts
    Myers, Devon
    Mohawesh, Rami
    Chellaboina, Venkata Ishwarya
    Sathvik, Anantha Lakshmi
    Venkatesh, Praveen
    Ho, Yi-Hui
    Henshaw, Hanna
    Alhawawreh, Muna
    Berdik, David
    Jararweh, Yaser
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (01): : 1 - 26
  • [2] The Social Opportunities and Challenges in the Era of Large Language Models
    Huimin C.
    Zhiyuan L.
    Maosong S.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (05): : 1094 - 1103
  • [3] Artificial Intelligence in Dental Education: Opportunities and Challenges of Large Language Models and Multimodal Foundation Models
    Claman, Daniel
    Sezgin, Emre
    JMIR MEDICAL EDUCATION, 2024, 10
  • [4] Benchmarking Large Language Models: Opportunities and Challenges
    Hodak, Miro
    Ellison, David
    Van Buren, Chris
    Jiang, Xiaotong
    Dholakia, Ajay
    PERFORMANCE EVALUATION AND BENCHMARKING, TPCTC 2023, 2024, 14247 : 77 - 89
  • [5] Artificial intelligence foundation and pre-trained models: Fundamentals, applications, opportunities, and social impacts
    Kolides, Adam
    Nawaz, Alyna
    Rathor, Anshu
    Beeman, Denzel
    Hashmi, Muzammil
    Fatima, Sana
    Berdik, David
    Al-Ayyoub, Mahmoud
    Jararweh, Yaser
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 126
  • [6] Embracing Large Language Models for Medical Applications: Opportunities and Challenges
    Karabacak, Mert
    Margetis, Konstantinos
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (05)
  • [7] Large language models for building energy applications: Opportunities and challenges
    Liu, Mingzhe
    Zhang, Liang
    Chen, Jianli
    Chen, Wei-An
    Yang, Zhiyao
    Lo, L. James
    Wen, Jin
    O'Neill, Zheng
    BUILDING SIMULATION, 2025, 18 (02) : 225 - 234
  • [8] ChatGPT for good? On opportunities and challenges of large language models for education
    Kasneci, Enkelejda
    Sessler, Kathrin
    Kuechemann, Stefan
    Bannert, Maria
    Dementieva, Daryna
    Fischer, Frank
    Gasser, Urs
    Groh, Georg
    Guennemann, Stephan
    Huellermeier, Eyke
    Krusche, Stepha
    Kutyniok, Gitta
    Michaeli, Tilman
    Nerdel, Claudia
    Pfeffer, Juergen
    Poquet, Oleksandra
    Sailer, Michael
    Schmidt, Albrecht
    Seidel, Tina
    Stadler, Matthias
    Weller, Jochen
    Kuhn, Jochen
    Kasneci, Gjergji
    LEARNING AND INDIVIDUAL DIFFERENCES, 2023, 103
  • [9] Foundation models in ophthalmology: opportunities and challenges
    Sevgi, Mertcan
    Ruffell, Eden
    Antaki, Fares
    Chia, Mark A.
    Keane, Pearse A.
    CURRENT OPINION IN OPHTHALMOLOGY, 2025, 36 (01) : 90 - 98
  • [10] Large Language Models for Business Process Management: Opportunities and Challenges
    Vidgof, Maxim
    Bachhofner, Stefan
    Mendling, Jan
    BUSINESS PROCESS MANAGEMENT FORUM, BPM 2023 FORUM, 2023, 490 : 107 - 123