Temperature of the Source Plasma in Gradual Solar Energetic Particle Events

被引:0
|
作者
Donald V. Reames
机构
[1] University of Maryland,Institute for Physical Science and Technology
来源
Solar Physics | 2016年 / 291卷
关键词
Solar energetic particles; Solar flares; Coronal mass ejections; Solar system abundances;
D O I
暂无
中图分类号
学科分类号
摘要
Scattering during interplanetary transport of particles during large, “gradual” solar energetic-particle (SEP) events can cause element abundance enhancements or suppressions that depend upon the mass-to-charge ratio [A/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A/Q$\end{document}] of the ions as an increasing function early in events and a decreasing function of the residual scattered ions later. Since the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q$\end{document}-values for the ions depend upon the source plasma temperature [T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document}], best fits of the power-law dependence of enhancements vs.A/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A/Q$\end{document} can determine T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document}. These fits provide a fundamentally new method to determine the most probable value of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document} for these events in the energy region 3–10MeVamu−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3\,\mbox{--}\,10~\mbox{MeV}\,\mbox{amu}^{-1}$\end{document}. Complicated variations in the grouping of element enhancements or suppressions match similar variations in A/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A/Q$\end{document} at the best-fit temperature. We find that fits to the times of increasing and decreasing powers give similar values of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document}, in the range of 0.8 – 1.6 MK for 69 % of events, consistent with the acceleration of ambient coronal plasma by shock waves driven out from the Sun by coronal mass ejections (CMEs). However, 24 % of the SEP events studied showed plasma of 2.5 – 3.2 MK, typical of that previously determined for the smaller impulsive SEP events; these particles may be reaccelerated preferentially by quasi-perpendicular shock waves that require a high injection threshold that the impulsive-event ions exceed or simply by high intensities of impulsive suprathermal ions at the shock. The source-temperature distribution of ten higher-energy ground-level events (GLEs) in the sample is similar to that of the other gradual events, at least for SEPs in the energy-range of 3–10MeVamu−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3\,\mbox{--}\,10~\mbox{MeV}\,\mbox{amu}^{-1}$\end{document}. Some events show evidence that a portion of the ions may have been further stripped of electrons before the shock acceleration; such events are smaller and tend to cluster late in the solar cycle.
引用
收藏
页码:911 / 930
页数:19
相关论文
共 50 条
  • [21] Initial Fe/O Enhancements in Large, Gradual, Solar Energetic Particle Events: Observations from Wind and Ulysses
    Tylka, Allan J.
    Malandraki, Olga E.
    Dorrian, Gareth
    Ko, Yuan-Kuen
    Marsden, Richard G.
    Ng, Chee K.
    Tranquille, Cecil
    SOLAR PHYSICS, 2013, 285 (1-2) : 251 - 267
  • [22] Spatial Distribution of Element Abundances and Ionization States in Solar Energetic-Particle Events
    Reames, Donald V.
    SOLAR PHYSICS, 2017, 292 (08)
  • [23] Spatial Distribution of Element Abundances and Ionization States in Solar Energetic-Particle Events
    Donald V. Reames
    Solar Physics, 2017, 292
  • [24] OBSERVED CORE OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT
    Kocharov, L.
    Reiner, M. J.
    Klassen, A.
    Thompson, B. J.
    Valtonen, E.
    ASTROPHYSICAL JOURNAL, 2010, 725 (02) : 2262 - 2269
  • [25] What Are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures
    Donald V. Reames
    Space Science Reviews, 2015, 194 : 303 - 327
  • [26] What Are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures
    Reames, Donald V.
    SPACE SCIENCE REVIEWS, 2015, 194 (1-4) : 303 - 327
  • [27] Extreme fluxes in solar energetic particle events: Methodological and physical limitations
    Miroshnichenko, L. I.
    Nymmik, R. A.
    RADIATION MEASUREMENTS, 2014, 61 : 6 - 15
  • [28] The role of quasi-perpendicular shocks in solar energetic particle events
    Tylka, AJ
    Physics of Collisionless Shocks, 2005, 781 : 185 - 190
  • [29] Hydrogen and the Abundances of Elements in Impulsive Solar Energetic-Particle Events
    Donald V. Reames
    Solar Physics, 2019, 294
  • [30] Variations in Abundance Enhancements in Impulsive Solar Energetic-Particle Events and Related CMEs and Flares
    Reames, Donald V.
    Cliver, Edward W.
    Kahler, Stephen W.
    SOLAR PHYSICS, 2014, 289 (12) : 4675 - 4689