Ballistic to diffusive crossover of heat flow in graphene ribbons

被引:0
作者
Myung-Ho Bae
Zuanyi Li
Zlatan Aksamija
Pierre N Martin
Feng Xiong
Zhun-Yong Ong
Irena Knezevic
Eric Pop
机构
[1] Micro and Nanotechnology Lab,Department of Electrical and Computer Engineering
[2] University of Illinois at Urbana-Champaign,Department of Physics
[3] University of Illinois at Urbana-Champaign,Department of Electrical and Computer Engineering
[4] University of Illinois at Urbana-Champaign,undefined
[5] University of Wisconsin-Madison,undefined
[6] Beckman Institute,undefined
[7] University of Illinois at Urbana-Champaign,undefined
[8] Present address: Korea Research Institute of Standards and Science,undefined
[9] Daejeon 305-340,undefined
[10] Republic of Korea,undefined
来源
Nature Communications | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Heat flow in nanomaterials is an important area of study, with both fundamental and technological implications. However, little is known about heat flow in two-dimensional devices or interconnects with dimensions comparable to the phonon mean free path. Here we find that short, quarter-micron graphene samples reach ~35% of the ballistic thermal conductance limit up to room temperature, enabled by the relatively large phonon mean free path (~100 nm) in substrate-supported graphene. In contrast, patterning similar samples into nanoribbons leads to a diffusive heat-flow regime that is controlled by ribbon width and edge disorder. In the edge-controlled regime, the graphene nanoribbon thermal conductivity scales with width approximately as ~W1.80.3, being about 100 W m−1 K−1 in 65-nm-wide graphene nanoribbons, at room temperature. These results show how manipulation oftwo-dimensional device dimensions and edges can be used to achieve full control of their heat-carrying properties, approaching fundamentally limited upper or lower bounds.
引用
收藏
相关论文
共 50 条
[41]   New perspectives for modelling ballistic-diffusive heat conduction [J].
G. Balassa ;
P. Rogolino ;
Á. Rieth ;
R. Kovács .
Continuum Mechanics and Thermodynamics, 2021, 33 :2007-2026
[42]   Ballistic-diffusive heat conduction at nanoscale: GENERIC approach [J].
Grmela, M ;
Lebon, G ;
Dauby, PC ;
Bousmina, M .
PHYSICS LETTERS A, 2005, 339 (3-5) :237-245
[43]   SPH numerical modeling for ballistic-diffusive heat conduction [J].
Jiang, Fangming ;
Sousa, Antonio C. M. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2006, 50 (06) :499-515
[44]   New perspectives for modelling ballistic-diffusive heat conduction [J].
Balassa, G. ;
Rogolino, P. ;
Rieth, A. ;
Kovacs, R. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (05) :2007-2026
[45]   Transition from ballistic to diffusive heat transfer in a chain with breaks [J].
Krivtsov, Anton M. ;
Kuzkin, Vitaly A. ;
Tsaplin, Vadim A. .
PHYSICAL REVIEW E, 2024, 110 (05)
[46]   Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures [J].
Kolosov, O. V. ;
Pumarol, M. E. ;
Tovee, P. ;
Rosamond, M. C. ;
Petty, M. C. ;
Zeze, D. A. ;
Falko, V. .
NANOTECHNOLOGY 2012, VOL 1: ADVANCED MATERIALS, CNTS, PARTICLES, FILMS AND COMPOSITES, 2012, :206-209
[47]   Extending ballistic graphene FET lumped element models to diffusive devices [J].
Vincenzi, G. ;
Deligeorgis, G. ;
Coccetti, F. ;
Dragoman, M. ;
Pierantoni, L. ;
Mencarelli, D. ;
Plana, R. .
SOLID-STATE ELECTRONICS, 2012, 76 :8-12
[48]   Direct Nanoscale Imaging of Ballistic and Diffusive Thermal Transport in Graphene Nanostructures [J].
Pumarol, Manuel E. ;
Rosamond, Mark C. ;
Tovee, Peter ;
Petty, Michael C. ;
Zeze, Dagou A. ;
Falko, Vladimir ;
Kolosov, Oleg V. .
NANO LETTERS, 2012, 12 (06) :2906-2911
[49]   Edge states and ballistic transport in zigzag graphene ribbons: The role of SiC polytypes [J].
Miettinen, A. L. ;
Nevius, M. S. ;
Ko, W. ;
Kolmer, M. ;
Li, A-P ;
Nair, M. N. ;
Kierren, B. ;
Moreau, L. ;
Conrad, E. H. ;
Tejeda, A. .
PHYSICAL REVIEW B, 2019, 100 (04)
[50]   Crossover between ballistic and diffusive regime in 2D SiGe quantum well [J].
Dlimi, S. ;
Limouny, L. ;
El Kaaouachi, A. .
APPLIED SURFACE SCIENCE ADVANCES, 2021, 3