Equalities and inequalities for ranks of products of generalized inverses of two matrices and their applications

被引:0
作者
Yongge Tian
机构
[1] Central University of Finance and Economics,China Economics and Management Academy
来源
Journal of Inequalities and Applications | / 2016卷
关键词
matrix product; generalized inverse; reverse-order law; rank; equality; inequality; 15A03; 15A09; 15A24;
D O I
暂无
中图分类号
学科分类号
摘要
A complex matrix X is called an {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverse of the complex matrix A, denoted by A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots, j)}$\end{document}, if it satisfies the ith, …, jth equations of the four matrix equations (i) AXA=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AXA = A$\end{document}, (ii) XAX=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$XAX=X$\end{document}, (iii) (AX)∗=AX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(AX)^{*} = AX$\end{document}, (iv) (XA)∗=XA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(XA)^{*} = XA$\end{document}. The eight frequently used generalized inverses of A are A†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{\dagger}$\end{document}, A(1,3,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,3,4)}$\end{document}, A(1,2,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2,4)}$\end{document}, A(1,2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2,3)}$\end{document}, A(1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,4)}$\end{document}, A(1,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,3)}$\end{document}, A(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2)}$\end{document}, and A(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1)}$\end{document}. The {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverse of a matrix is not necessarily unique and their general expressions can be written as certain linear or quadratic matrix-valued functions that involve one or more variable matrices. Let A and B be two complex matrices such that the product AB is defined, and let A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots ,j)}$\end{document} and B(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}$\end{document} be the {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverses of A and B, respectively. A prominent problem in the theory of generalized inverses is concerned with the reverse-order law (AB)(i,…,j)=B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(AB)^{(i,\ldots,j)} = B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document}. Because the reverse-order products B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document} are usually not unique and can be written as linear or nonlinear matrix-valued functions with one or more variable matrices, the reverse-order laws are in fact linear or nonlinear matrix equations with multiple variable matrices. Thus, it is a tremendous and challenging work to establish necessary and sufficient conditions for all these reverse-order laws to hold. In order to make sufficient preparations in characterizing the reverse-order laws, we study in this paper the algebraic performances of the products B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document}. We first establish 126 analytical formulas for calculating the global maximum and minimum ranks of B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document} for the eight frequently used {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverses of matrices A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots,j)}$\end{document} and B(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}$\end{document}, and then use the rank formulas to characterize a variety of algebraic properties of these matrix products.
引用
收藏
相关论文
共 29 条
[1]  
Moore EH(1920)On the reciprocal of the general algebraic matrix Bull. Am. Math. Soc. 26 394-395
[2]  
Penrose R(1955)A generalized inverse for matrices Proc. Camb. Philos. Soc. 51 406-413
[3]  
Arghiriade E(1963)Sur les matrices qui sont permutables avec leur inverse généralisée Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 35 244-251
[4]  
Arghiriade E(1967)Remarques sur l’inverse généralisée d’un produit de matrices Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 42 621-625
[5]  
Cvetković-Ilić DS(2016)Various solutions to reverse order law problems Linear Multilinear Algebra 64 1207-1219
[6]  
Djikić M(2013)Basic reverse order law and its equivalencies Aequ. Math. 85 505-517
[7]  
Dinčić NČ(2001)Unified approach to the reverse order rule for generalized inverses Acta Sci. Math. 67 761-776
[8]  
Djordjević DS(1980)On pseudoinverses of operator products Linear Algebra Appl. 33 123-131
[9]  
Djordjević DS(1966)Note on the generalized inverse of a matrix product SIAM Rev. 8 518-521
[10]  
Galperin AM(1986)The reverse order law revisited Linear Algebra Appl. 76 241-246