New Solvable Many-Body Model of Goldfish Type

被引:0
|
作者
F. Calogero
机构
[1] University of Rome “La Sapienza” Istituto Nazionale di Fisica Nucleare,Physics Department
关键词
Integrable dynamical systems; solvable dynamical systems; integrable Newtonian many-body problems; solvable Newtonian many-body problems; isochronous dynamical systems; 70F10; 70H06; 37J35; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
A new solvable N-body model of goldfish type is identified. Its Newtonian equations of motion read as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eqalign{\ddot{z}_n = - 6\dot{z}_n}{z_n} - 4z_n^3 + {3 \over 2}(\dot{z}_n + 2z_n^2)\sum\limits_{k = 1}^N {\left( {{{{{\dot{z}}_k}} \over {{z_k}}} + 2{z_k}} \right)} + 2\sum\limits_{\ell = 1,\ell \ne n}^N {\left[ {{{({{\dot{z}}_n} + 2z_n^2)({{\dot{z}}_\ell } + 2z_\ell ^2)} \over {{z_n} - {z_\ell }}}} \right]} , n = 1, \ldots ,N, $$\end{document} where zn ≡ zn(t) are the N dependent variables (with N an arbitrary positive integer), t is the independent variable (“time”) and the dots indicate time-differentiations. Its isochronous variant is also obtained and discussed. Other new solvable models of goldfish type characterize the behavior of these systems in the immediate neighborhood of their equilibria.
引用
收藏
页码:62 / 80
页数:18
相关论文
共 50 条