Implications of Time Varying Cosmological Constant on Kaluza-Klein Cosmological Model

被引:0
作者
Namrata I. Jain
S. S. Bhoga
G. S. Khadekar
机构
[1] M.D. College,Dept. of Physics
[2] RTM Nagpur University,Dept. of Physics
[3] RTM Nagpur University,Dept. of Mathematics
来源
International Journal of Theoretical Physics | 2013年 / 52卷
关键词
Kaluza-Klein metric; Higher dimension; Cosmological model; Cosmological constant; FRW metric; Field equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the cosmological model with variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varLambda= \alpha \frac{\dot{R}^{2}}{R^{2}} + \beta\frac{1}{R^{2}}$\end{document} in Kaluza-Klein metric have been studied. Here α and β are dimensionless parameters. The solutions to Einstein field equations which assume that the Universe is filled with perfect fluid have been obtained by using the Gamma Law Equation p=(γ−1)ρ; in which the parameter γ is constant and power law equation A(t)=Rn(t)—where A(t) is scale factor for extra dimension and R(t) is scale factor for space dimensions. The fifth dimension for the radiation dominated phases is more prominent with this model. Other physical parameters i.e. density, pressure, deceleration parameter, Hubble parameter have been determined for this model. It is observed physical parameters depends upon constants α, β and n. Neo-classical tests have also been studied in this paper.
引用
收藏
页码:4416 / 4426
页数:10
相关论文
共 55 条
[1]  
Perlmutter B.(1999)undefined Astrophys. J. 517 565-undefined
[2]  
Reiss P.J.E.(1998)undefined Astron. J. 116 1009-undefined
[3]  
Caroll A.D.(1992)undefined Annu. Rev. Astron. Astrophys. 30 499-undefined
[4]  
Press T.(1988)undefined Phys. Rev. D 37 3406-undefined
[5]  
Ratra K.(1997)undefined Phys. Rev. D 55 5881-undefined
[6]  
Peebles V.(1990)undefined Phys. Rep. 380 235-undefined
[7]  
Dolgov V.(2010)undefined Class. Quantum Gravity 27 2823-undefined
[8]  
Padmanabhan A.A.(2011)undefined Int. J. Mod. Phys. B 20 695-undefined
[9]  
Ponce de Leon D.(2010)undefined JPG 37 559-undefined
[10]  
Romano S.C.(1990)undefined Phys. Rev. D 41 375-undefined