Sensitivity and stability analysis in DEA with bounded uncertainty

被引:0
作者
Feng He
Xiaoning Xu
Rong Chen
Na Zhang
机构
[1] University of Science and Technology Beijing,Donlinks School of Economics and Management
[2] Tsinghua University,School of Economics and Management
来源
Optimization Letters | 2016年 / 10卷
关键词
Data envelopment analysis; Sensitivity; Stability radius; Interval number;
D O I
暂无
中图分类号
学科分类号
摘要
Measurement errors, incomplete information and noisy input and output data create difficulties in assessing the efficiency of data envelopment analysis (DEA). Previous studies have addressed uncertainty using interval analysis to extend the classical DEA problem to the case of bounded uncertainties. This paper proposes an approach to analyze the sensitivity and stability radius. By assuming that the data vary within a bounded interval, all of the decision making units (DMUs) can be classified as E++,E+,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {E}^{++}, \hbox {E}^{+},$$\end{document} and E-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {E}^{-}$$\end{document}. To determine how sensitive these classifications are to possible data perturbations, the paper develops programs to calculate the stability radius within which the percentage data variation does not change the class of efficiency unit. In addition, the data changes are applied to not only the DMU that is being evaluation but also all of the DMUs and the various input and output subsets.
引用
收藏
页码:737 / 752
页数:15
相关论文
共 85 条
[1]  
Charnes A(1978)Measuring the efficiency of decision making units Eur. J. Oper. Res. 2 429-444
[2]  
Cooper WW(2009)Data envelopment analysis (DEA)-thirty years on Eur. J. Oper. Res. 192 1-17
[3]  
Rhodes E(2013)A survey of DEA applications Omega 41 893-902
[4]  
Cook WD(1995)Detecting influential observations in data envelopment analysis J. Prod. Anal. 6 27-46
[5]  
Seiford LM(1996)Simulation studies of efficiency, returns to scale and misspecification with nonlinear functions in DEA Ann. Oper. Res. 66 233-253
[6]  
Liu JS(1997)Sensitivity in data envelopment analysis for arbitrary perturbations of data Glas. Mat. 32 315-335
[7]  
Lu LYY(2004)Preservation of efficiency and inefficiency classification in data envelopment analysis Math. Commun. 9 51-62
[8]  
Lu WM(1990)Sensitivity analysis of the additive model in data envelopment analysis Eur. J. Oper. Res. 48 332-341
[9]  
Lin BJY(1992)Sensitivity analysis of the proportionate change of inputs (or outputs) in data envelopment analysis Glas. Mat. 27 393-405
[10]  
Wilson PW(2001)Super-efficiency and DEA sensitivity analysis Eur. J. Oper. Res. 129 443-455