Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.)

被引:0
|
作者
Paolo Baldi
Pieter Jacobus Wolters
Matteo Komjanc
Roberto Viola
Riccardo Velasco
Silvio Salvi
机构
[1] IASMA Research and Innovation Center,Faculty of Agriculture
[2] Fondazione Edmund Mach,undefined
[3] University of Bologna,undefined
来源
Molecular Breeding | 2013年 / 31卷
关键词
Tree architecture; Fine mapping; locus; Growth habit;
D O I
暂无
中图分类号
学科分类号
摘要
A better understanding of the genetic control of tree architecture would potentially allow improved tailoring of newly bred apple cultivars in terms of field management aspects, such as planting density, pruning, pest control and disease protection. It would also have an indirect impact on yield and fruit quality. The Columnar (Co) locus strongly suppresses lateral branch elongation and is the most important genetic locus influencing tree architecture in apple. Co has previously been mapped on apple linkage group (LG) 10. In order to obtain fine mapping of Co, both genetically and physically, we have phenotypically analysed and screened three adult segregating experimental populations, with a total of 301 F1 plants, and one substantial 3-year old population of 1,250 F1 plants with newly developed simple sequence repeat (SSR) markers, based on the ‘Golden delicious’ apple genome sequence now available. Co was found to co-segregate with SSR marker Co04R12 and was confined in a region of 0.56 cM between SSR markers Co04R11 and Co04R13, corresponding to 393 kb on the ‘Golden delicious’ genome sequence. In this region, 36 genes were predicted, including at least seven sequences potentially belonging to genes that could be considered candidates for involvement in control of shoot development. Our results provide highly reliable, virtually co-segregating markers that will facilitate apple breeding aimed at modifications of the tree habit and lay the foundations for the cloning of Co.
引用
收藏
页码:429 / 440
页数:11
相关论文
共 50 条
  • [11] ISOZYMIC CHARACTERIZATION OF APPLE (Malus domestica, Borkh.) CLONES
    Menendez, Ricardo A.
    Fritts, Robert, Jr.
    Larsen, Fenton E.
    PLANT PHYSIOLOGY, 1984, 75 : 57 - 57
  • [12] Evaluation of Finnish apple cultivars (Malus domestica Borkh.)
    Krasova, Nina
    Ozherelieva, Zoya
    Galasheva, Anna
    AGRICULTURAL AND FOOD SCIENCE, 2020, 29 (05) : 515 - 525
  • [13] Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.)
    Songwen Zhang
    Christopher Gottschalk
    Steve van Nocker
    BMC Genomics, 20
  • [14] Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.)
    Zhang, Songwen
    Gottschalk, Christopher
    van Nocker, Steve
    BMC GENOMICS, 2019, 20 (01)
  • [15] Predicting branching in young apple trees (Malus domestica Borkh.)
    Lindhagen, M
    SECOND INTERNATIONAL SYMPOSIUM ON MODELS FOR PLANT GROWTH, ENVIRONMENTAL CONTROL AND FARM MANAGEMENT IN PROTECTED CULTIVATION, 1998, (456): : 125 - 131
  • [16] Molecular characterization of newS-RNases (‘S31’ and ‘S32’) in apple (Malus ×domestica Borkh.)’) in apple (Malus ×domestica Borkh.)
    Hoytaek Kim
    Jongin Park
    Yutaka Hirata
    Illsup Nou
    Journal of Plant Biology, 2008, 51 : 202 - 208
  • [17] Fruit quality of 'Fuji' apple (Malus domestica Borkh.) strains
    Veberic, Robert
    Zadravec, Peter
    Stampar, Franci
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2007, 87 (04) : 593 - 599
  • [18] Metabolic Engineering of Flavonoid Biosynthesis in Apple (Malus domestica Borkh.)
    Szankowski, I.
    Li, H.
    Flachowsky, H.
    Hoefer, M.
    Hanke, M. -V.
    Fischer, T.
    Forkmann, G.
    Treutter, D.
    Schwab, W.
    Hoffmann, T.
    XII EUCARPIA SYMPOSIUM ON FRUIT BREEDING AND GENETICS, 2009, 814 : 511 - 516
  • [19] A biophysical model of apple (Malus domestica Borkh.) fruit growth
    Dequeker, B.
    SSalagovic, J.
    Retta, M.
    Verboven, P.
    Nicolai, B.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON INTEGRATIVE APPROACHES TO PRODUCT QUALITY IN FRUITS AND VEGETABLES, 2022, 1353 : 153 - 161
  • [20] Mapping quantitative physiological traits in apple (Malus × domestica Borkh.)
    R. Liebhard
    M. Kellerhals
    W. Pfammatter
    M. Jertmini
    C. Gessler
    Plant Molecular Biology, 2003, 52 : 511 - 526