Exponential inequalities for the distributions of V-processes based on dependent observations

被引:0
作者
Borisov I.S. [1 ,2 ]
Zhechev V.A. [3 ]
机构
[1] Sobolev Institute of Mathematics, Novosibirsk
[2] Novosibirsk State University, Novosibirsk
[3] Yandex Technologies, Moscow
基金
俄罗斯基础研究基金会;
关键词
canonical U - and V -statistics; dependent observations; exponential inequality; mixing conditions; multiple orthogonal series; V; -process;
D O I
10.3103/S1055134419040023
中图分类号
学科分类号
摘要
In the paper, exponential inequalities are obtained for the distribution tail of the sup-norm of a V-process with canonical kernel based on independent or weakly dependent observations. © 2019, Allerton Press, Inc.
引用
收藏
页码:263 / 273
页数:10
相关论文
共 10 条
[1]  
Borisov I.S., Approximation of distributions of von Mises statistics with multidimensional kernels, Sib. Mat. Zh., 32, (1991)
[2]  
Borisov I.S., Volod'ko N.V., Exponential inequalities for the distributions of canonical U- and V-statistics of dependent observations, Mat. Tr., 11, (2008)
[3]  
Borisov I.S., Volod'ko N.V., Orthogonal series and limit theorems for canonical U- and V-statistics of stationary observations, Mat. Tr., 11, (2008)
[4]  
Borisov I.S., Zhechev V.A., Invariance principle for canonical U- and V-statistics based on dependent observations, Mat. Tr., 16, (2013)
[5]  
Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, (1972)
[6]  
Ruzankin P.S., On exponential inequalities for canonical V-statistics, Sib. Elektron. Mat. Izv., 11, (2014)
[7]  
Borisov I.S., Volodko N.V., A note on exponential inequalities for the distribution tails of canonical Von Mises’ statistics of dependent observations, Statist. Probab. Lett., 96, (2015)
[8]  
Dedecker J., Prieur C., New dependence coefficients. Examples and applications to statistics, Probab. Theory Relat. Fields, 132, (2005)
[9]  
Doukhan P., Mixing. Properties and Examples, 85, (1994)
[10]  
Hoeffding W., Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 18, (1963)