Covering functionals of convex polytopes with few vertices

被引:0
|
作者
Xia Li
Lingxu Meng
Senlin Wu
机构
[1] North University of China,Department of Mathematics
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Convex body; Convex polytope; Covering functional; Hadwiger’s covering conjecture; Primary 52A20; Secondary 52C17; 52A15;
D O I
暂无
中图分类号
学科分类号
摘要
By using elementary yet interesting observations and refining techniques used in a recent work by Fei Xue et al., we present new upper bounds for covering functionals of convex polytopes in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with few vertices. In these estimations, no information other than the number of vertices of the convex polytope is used.
引用
收藏
页码:135 / 146
页数:11
相关论文
共 50 条
  • [41] On families of convex polytopes with constant metric dimension
    Imran, Muhammad
    Bokhary, Syed Ahtsham Ul Haq
    Baig, A. Q.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (09) : 2629 - 2638
  • [42] On Sharp Bounds on Partition Dimension of Convex Polytopes
    Chu, Yu-Ming
    Nadeem, Muhammad Faisal
    Azeem, Muhammad
    Siddiqui, Muhammad Kamran
    IEEE ACCESS, 2020, 8 (08): : 224781 - 224790
  • [43] Covering the plane with copies of a convex disk
    D. Ismailescu
    Discrete & Computational Geometry, 1998, 20 : 251 - 263
  • [44] Covering the plane with copies of a convex disk
    Ismailescu, D
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (02) : 251 - 263
  • [45] Lattice packing and covering of convex bodies
    Peter M. Gruber
    Proceedings of the Steklov Institute of Mathematics, 2011, 275 : 229 - 238
  • [46] New classes of convex polytopes with constant metric dimension
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, S. A.
    Baskoro, E. T.
    UTILITAS MATHEMATICA, 2014, 95 : 97 - 111
  • [47] Deviation inequalities for random polytopes in arbitrary convex bodies
    Brunel, Victor-Emmanuel
    BERNOULLI, 2020, 26 (04) : 2488 - 2502
  • [48] SOME PROPERTIES OF SELF-SIMILAR CONVEX POLYTOPES
    Tetenov, A. V.
    Davydkin, I. B.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : 48 - 52
  • [49] Classification of Finite Metric Spaces and Combinatorics of Convex Polytopes
    Vershik A.M.
    Arnold Mathematical Journal, 2015, 1 (1) : 75 - 81
  • [50] Criteria for strict monotonicity of the mixed volume of convex polytopes
    Bihan, Frederic
    Soprunov, Ivan
    ADVANCES IN GEOMETRY, 2019, 19 (04) : 527 - 540