Covering functionals of convex polytopes with few vertices

被引:0
|
作者
Xia Li
Lingxu Meng
Senlin Wu
机构
[1] North University of China,Department of Mathematics
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Convex body; Convex polytope; Covering functional; Hadwiger’s covering conjecture; Primary 52A20; Secondary 52C17; 52A15;
D O I
暂无
中图分类号
学科分类号
摘要
By using elementary yet interesting observations and refining techniques used in a recent work by Fei Xue et al., we present new upper bounds for covering functionals of convex polytopes in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with few vertices. In these estimations, no information other than the number of vertices of the convex polytope is used.
引用
收藏
页码:135 / 146
页数:11
相关论文
共 50 条
  • [1] Covering functionals of convex polytopes with few vertices
    Li, Xia
    Meng, Lingxu
    Wu, Senlin
    ARCHIV DER MATHEMATIK, 2022, 119 (02) : 135 - 146
  • [2] Covering functionals of convex polytopes
    Wu, Senlin
    He, Chan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 : 53 - 68
  • [3] On the Distance of Polytopes with Few Vertices to the Euclidean Ball
    Tikhomirov, Konstantin E.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 173 - 181
  • [4] On the Distance of Polytopes with Few Vertices to the Euclidean Ball
    Konstantin E. Tikhomirov
    Discrete & Computational Geometry, 2015, 53 : 173 - 181
  • [5] On covering functionals of convex bodies
    He, Chan
    Martini, Horst
    Wu, Senlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1236 - 1256
  • [6] The isotropic constant of random polytopes with vertices on convex surfaces
    Prochno, Joscha
    Thaele, Hristoph
    Turchi, Nicola
    JOURNAL OF COMPLEXITY, 2019, 54
  • [7] A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies
    He, Chan
    Lv, Yafang
    Martini, Horst
    Wu, Senlin
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (03) : 1036 - 1055
  • [8] A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies
    Chan He
    Yafang Lv
    Horst Martini
    Senlin Wu
    Journal of Optimization Theory and Applications, 2023, 196 : 1036 - 1055
  • [9] Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm
    Yu, Man
    Lv, Yafang
    Zhao, Yanping
    He, Chan
    Wu, Senlin
    MATHEMATICS, 2023, 11 (09)
  • [10] COVERING FUNCTIONALS OF MINKOWSKI SUMS AND DIRECT SUMS OF CONVEX BODIES
    Wu, Senlin
    Fan, Baofang
    He, Chan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 1145 - 1154