A numerical algorithm for the nonlinear Kirchhoff string equation

被引:0
|
作者
Jemal Peradze
机构
[1] Tbilisi State University,Department of Applied Mathematics and Computer Sciences
来源
Numerische Mathematik | 2005年 / 102卷
关键词
65 M;
D O I
暂无
中图分类号
学科分类号
摘要
The initial boundary value problem is considered for the dynamic string equation [inline-graphic not available: see fulltext]. Its solution is found by means of an algorithm, the constituent parts of which are the Galerkin method, the modified Crank-Nicolson difference scheme used to perform approximation with respect to spatial and time variables, and also a Picard type iteration process for solving the system of nonlinear equations obtained by discretization. Errors of the three parts of the algorithm are estimated and, as a result, its total error estimate is obtained.
引用
收藏
页码:311 / 342
页数:31
相关论文
共 50 条
  • [21] Numerical results for a fourth-order nonlinear wave equation of Kirchhoff type with a viscoelastic term
    Le Thi Mai Thanh
    Tran Trinh Manh Dung
    Nguyen Huu Nhan
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1319 - 1344
  • [22] Exponential and polynomial stabilization of the Kirchhoff string by nonlinear boundary control
    Yuhu Wu
    Jianmin Wang
    Boundary Value Problems, 2013
  • [23] A new α-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation
    Li, Caojie
    Zhang, Haixiang
    Yang, Xuehua
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01): : 147 - 168
  • [24] NUMERICAL ALGORITHM FOR SOLVING A WEAKLY NONLINEAR DIFFERENTIAL-EQUATION
    BOUJOT, J
    DINH, APN
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (22): : 1063 - 1066
  • [25] An Extended Hamiltonian Algorithm for the Numerical Solution of the Nonlinear Matrix Equation
    Duan, Xiao-Min
    Zhao, Xin-Yu
    Sun, Hua-Fei
    Ji, Xue-Ting
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (02): : 227 - 230
  • [26] ON SOLITON INSTABILITIES FOR THE NONLINEAR STRING EQUATION
    LAMBERT, F
    MUSETTE, M
    JOURNAL DE PHYSIQUE, 1989, 50 (C-3): : 33 - 38
  • [27] GLOBAL SOLUTION OF A NONLINEAR STRING EQUATION
    NEWMAN, WG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (03) : 689 - 704
  • [28] NONLINEAR WKB ANALYSIS OF THE STRING EQUATION
    FUCITO, F
    GAMBA, A
    MARTELLINI, M
    RAGNISCO, O
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (11-12): : 2123 - 2147
  • [29] An attractor for a nonlinear dissipative wave equation of Kirchhoff type
    Nakao, Mitsuhiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) : 652 - 659
  • [30] On the improved Kirchhoff equation modelling nonlinear vibrations of beams
    Andrianov, I. V.
    Awrejcewicz, J.
    ACTA MECHANICA, 2006, 186 (1-4) : 135 - 139