Thermally Stimulated Luminescence of Y2SiO5:Ce3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}~{\mathrm {Ce}}^{3+}$$\end{document} Commercial Phosphor Powder and Thin Films

被引:0
作者
N. G. Debelo
F. B. Dejene
Kittessa Roro
机构
[1] University of the Free State,Department of Physics
[2] Council for Scientific and Industrial Research,CSIR
关键词
Heating rate; Phosphor; Thermoluminescence; Thin film;
D O I
10.1007/s10765-016-2081-x
中图分类号
学科分类号
摘要
We report on the thermoluminescence (TL) properties of Y2SiO5:Ce3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}$$\end{document} phosphor powder and thin films. For the phosphor powder, the TL intensity increases with an increase in UV dose for up to 20 min and then decreases. The TL intensity peak shifts slightly to higher-temperature region at relatively high heating rates, but with reduced peak intensity. Important TL kinetic parameters, such as the activation energy (E) and the frequency factor (s), were calculated from the glow curves using a variable heating rate method, and it was found that the glow peaks obey first-order kinetics. For the films, broad TL emissions over a wide temperature range with reduced intensity relative to that of the powder were observed. The maxima of the TL glow peaks of the films deposited in oxygen ambient and vacuum shift toward higher temperature relative to the TL peak position of the film deposited in an argon environment. Vacuum environment resulted in the formation of a deep trap relative to oxygen and argon environments. Furthermore, the structure of Y2SiO5:Ce3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}$$\end{document} phosphor powder transformed from x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}_{2}$$\end{document}-monoclinic polycrystalline phase to x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}_{1}$$\end{document}-monoclinic polycrystalline phase, for deposition at low substrate temperature.
引用
收藏
相关论文
共 72 条
  • [1] Karmakar M(2010)undefined Indian J. Phys. 84 529-847
  • [2] Kumari P(2015)undefined Indian J. Phys. 89 1297-undefined
  • [3] Baitha P(2009)undefined Indian J. Pure Appl. Phys. 47 420-undefined
  • [4] Manam J(2015)undefined Indian J. Phys. 89 41-undefined
  • [5] Raja E(2014)undefined Indian J. Phys. 88 843-undefined
  • [6] Dhabekar B(2009)undefined Indian J. Pure Appl. Phys. 47 435-undefined
  • [7] Menon S(2015)undefined Superlattice. Microstruct. 77 152-undefined
  • [8] More S(2006)undefined Appl. Phys. Lett. 88 103-undefined
  • [9] Rao T(2004)undefined Solid State Commun. 132 773-undefined
  • [10] Kher R(2009)undefined Phys. Rev. B 79 115104-undefined