H-Conformal Anti-Invariant Submersions from Almost Quaternionic Hermitian Manifolds

被引:0
作者
Kwang Soon Park
机构
[1] University of Seoul,Division of General Mathematics
来源
Czechoslovak Mathematical Journal | 2020年 / 70卷
关键词
horizontally conformal submersion; quaternionic manifold; totally geodesic; 53C15; 53C26; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.
引用
收藏
页码:631 / 656
页数:25
相关论文
共 29 条
[1]  
Akyol M A(2016)Conformal anti-invariant submersions from almost Hermitian manifolds Turk. J. Math. 40 43-70
[2]  
Şahin B(1981)Stability and isolation phenomena for Yang-Mills fields Commum. Math. Phys. 79 189-230
[3]  
Bourguignon J-P(1978)Harmonic morphisms between Riemannian manifolds Ann. Inst. Fourier 28 107-144
[4]  
Lawson H B(1967)Pseudo-Riemannian almost product manifolds and submersions J. Math. Mech. 16 715-737
[5]  
Fuglede B(1997)Harmonic morphisms between almost Hermitian manifolds Boll. Unione Mat. Ital., VII. Ser., B 11 185-197
[6]  
Gray A(2008)Riemannian submersions from quaternionic manifolds Acta. Appl. Math. 104 83-89
[7]  
Gudmundsson S(1987)Kaluza-Klein theory with scalar fields and generalized Hopf manifolds Classical Quantum Gravity 4 1317-1325
[8]  
Wood J C(1979)A mapping of Riemannian manifolds which preserves harmonic functions J. Math. Kyoto Univ. 19 215-229
[9]  
Ianus S(2016)Conformal anti-invariant submersions from hyper-Kähler manifolds JP J. Geom. Topol. 19 161-183
[10]  
Mazzocco R(2000)Applications of harmonic morphisms to gravity J. Math. Phys. 41 6918-6929