Proximal-Point Algorithm Using a Linear Proximal Term

被引:0
作者
B. S. He
X. L. Fu
Z. K. Jiang
机构
[1] Nanjing University,Department of Mathematics
来源
Journal of Optimization Theory and Applications | 2009年 / 141卷
关键词
Variational inequalities; Monotone variational inequalities; Proximal point algorithms; Linear proximal terms;
D O I
暂无
中图分类号
学科分类号
摘要
Proximal-point algorithms (PPAs) are classical solvers for convex optimization problems and monotone variational inequalities (VIs). The proximal term in existing PPAs usually is the gradient of a certain function. This paper presents a class of PPA-based methods for monotone VIs. For a given current point, a proximal point is obtained via solving a PPA-like subproblem whose proximal term is linear but may not be the gradient of any functions. The new iterate is updated via an additional slight calculation. Global convergence of the method is proved under the same mild assumptions as the original PPA. Finally, profiting from the less restrictions on the linear proximal terms, we propose some parallel splitting augmented Lagrangian methods for structured variational inequalities with separable operators.
引用
收藏
页码:299 / 319
页数:20
相关论文
共 20 条
  • [1] Ferris M.C.(1997)Engineering and economic applications of complementarity problems SIAM Rev. 39 669-713
  • [2] Pang J.S.(1999)Inexact implicit methods for monotone general variational inequalities Math. Program. Ser. A 86 199-217
  • [3] He B.S.(1970)Régularization d’inéquations variationelles par approximations sucessives Rev. Fr. Inf. Rech. Opér. Ser. R-3 4 154-158
  • [4] Martinet B.(2000)Lagrangian duality and related multiplier methods for variational inequality problems SIAM J. Optim. 10 1097-1115
  • [5] Auslender A.(2000)On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating Math. Program. 88 157-181
  • [6] Teboulle M.(1998)Approximate iterations in Bregman-function-based proximal algorithms Math. Program. Ser. A 83 113-123
  • [7] Burke J.(1976)Monotone operators and the proximal point algorithm SIAM J. Control Optim. 14 877-898
  • [8] Qian M.J.(1997)Convergence of proximal-like algorithms SIAM J. Optim. 7 1069-1083
  • [9] Eckstein J.(1998)A generalized proximal point algorithm for the variational inequality problem in a Hilbert space SIAM J. Optim. 8 197-216
  • [10] Rockafellar R.T.(1999)A logarithmic-quadratic proximal method for variational inequalities Comput. Optim. Appl. 12 31-40