Equivariant prequantization bundles on the space of connections and characteristic classes

被引:0
作者
Roberto Ferreiro Pérez
机构
[1] Universidad Complutense de Madrid,Departamento de Economía Financiera y Contabilidad I, Facultad de Ciencias Económicas y Empresariales
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Equivariant prequantization bundle; Space of connections; Equivariant characteristic classes; Differential characters; Chern–Simons line bundle; Primary 53C05; Secondary 53C08; 70S15; 58D27;
D O I
暂无
中图分类号
学科分类号
摘要
We show how characteristic classes determine equivariant prequantization bundles over the space of connections on a principal bundle. These bundles are shown to generalize the Chern–Simons line bundles to arbitrary dimensions. Our result applies to arbitrary bundles, and we study the action of both the gauge group and the automorphisms group. The action of the elements in the connected component of the identity of the group generalizes known results in the literature. The action of the elements not connected with the identity is shown to be determined by a characteristic class by using differential characters and equivariant cohomology. We extend our results to the space of Riemannian metrics and the actions of diffeomorphisms. In dimension 2, a ΓM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{M}$$\end{document}-equivariant prequantization bundle of the Weil–Petersson symplectic form on the Teichmüller space is obtained, where ΓM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{M}$$\end{document} is the mapping class group of the surface M.
引用
收藏
页码:1749 / 1770
页数:21
相关论文
共 34 条
[1]  
Andersen JE(2013)The Witten–Reshetikhin–Turaev invariants of finite order mapping tori I J. Reine Angew. Math. 681 1-38
[2]  
Andersen JE(2017)The Witten–Reshetikhin–Turaev invariant for links in finite order mapping tori I Adv. Math. 304 131-178
[3]  
Himpel B(1982)The Yang–Mills equations over Riemann surfaces Phil. Trans. R. Soc. Lond. A 308 523-615
[4]  
Jørgensen SF(1984)Dirac operators coupled to vector potentials Proc. Natl. Acad. Sci. USA 81 2597-2600
[5]  
Martens J(1982)Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante C. R. Acad. Sci. Paris 295 539-541
[6]  
McLelland B(1988)The evaluation map in field theory, sigma-models and strings—II Commun. Math. Phys. 114 381-438
[7]  
Atiyah MF(1990)Topological gauge theories and group cohomology Commun. Math. Phys. 129 393-429
[8]  
Bott R(2001)Remarks on determinant line bundles, Chern–Simons forms and invariants Math. Scand. 91 5-26
[9]  
Atiyah MF(2005)Equivariant characteristic forms in the bundle of connections J. Geom. Phys. 54 197-212
[10]  
Singer I(2009)Local anomalies and local equivariant cohomology Commun. Math. Phys. 286 445-458