About Special Elements in Quaternion Algebras Over Finite Fields

被引:0
作者
Diana Savin
机构
[1] Ovidius University,Faculty of Mathematics and Computer Science
来源
Advances in Applied Clifford Algebras | 2017年 / 27卷
关键词
Fibonacci number; Fibonacci quaternion; Finite field; Generalized Fibonacci–Lucas quaternion; Lucas number; Quaternion algebra; Primary 11R52; 11B39; Secondary 15A06; 16G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study special Fibonacci quaternions and special generalized Fibonacci–Lucas quaternions in quaternion algebras over finite fields.
引用
收藏
页码:1801 / 1813
页数:12
相关论文
共 50 条
[31]   Isomorphism and Isotopism Classes of Filiform Lie Algebras of Dimension up to Seven Over Finite Fields [J].
Falcon, O. J. ;
Falcon, R. M. ;
Nunez, J. .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :1151-1166
[32]   On the existence of primitive normal elements of rational form over finite fields of even characteristic [J].
Hazarika, Himangshu ;
Basnet, Dhiren Kumar ;
Kapetanakis, Giorgos .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (02) :357-382
[33]   Elements of prescribed order, prescribed traces and systems of rational functions over finite fields [J].
Özbudak, F .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 34 (01) :35-54
[34]   Elements of Prescribed Order, Prescribed Traces and Systems of Rational Functions Over Finite Fields [J].
Ferruh Özbudak .
Designs, Codes and Cryptography, 2005, 34 :35-54
[35]   Pair of primitive normal elements of rational form over finite fields of characteristic 2 [J].
Hazarika, Himangshu ;
Basnet, Dhiren Kumar .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01) :66-75
[36]   Pair of primitive normal elements of rational form over finite fields of characteristic 2 [J].
Himangshu Hazarika ;
Dhiren Kumar Basnet .
Indian Journal of Pure and Applied Mathematics, 2023, 54 :66-75
[37]   An Algorithm to Find Square Root of Quadratic Residues over Finite Fields using Primitive Elements [J].
Faisal ;
Gazali, Wikaria .
DISCOVERY AND INNOVATION OF COMPUTER SCIENCE TECHNOLOGY IN ARTIFICIAL INTELLIGENCE ERA, 2017, 116 :198-205
[38]   Primitive elements on lines in extensions of finite fields [J].
Cohen, Stephen D. .
FINITE FIELDS: THEORY AND APPLICATIONS, 2010, 518 :113-127
[39]   On elements of high order in general finite fields [J].
Popovych, Roman .
ALGEBRA & DISCRETE MATHEMATICS, 2014, 18 (02) :295-300
[40]   Nonlinearity of functions over finite fields [J].
Ryabov, Vladimir G. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (04) :231-246