Approximation and Orthogonality in Sobolev Spaces on a Triangle

被引:0
作者
Yuan Xu
机构
[1] University of Oregon,Department of Mathematics
来源
Constructive Approximation | 2017年 / 46卷
关键词
Approximation; Orthogonality; Sobolev space; Jacobi polynomials; Order of approximation; Triangle; 33C50; 41A10; 41A63; 42C05; 42C10; 65M70; 65N35;
D O I
暂无
中图分类号
学科分类号
摘要
Approximation by polynomials on a triangle is studied in the Sobolev space W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document} that consists of functions whose derivatives of up to r-th order have bounded L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm. The first part aims at understanding the orthogonal structure in the Sobolev space on the triangle, which requires explicit construction of an inner product that involves derivatives and its associated orthogonal polynomials, so that the projection operators of the corresponding Fourier orthogonal expansion commute with partial derivatives. The second part establishes the sharp estimate for the error of polynomial approximation in W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document}, when r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 1$$\end{document} and r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, where the polynomials of approximation are the partial sums of the Fourier expansions in orthogonal polynomials of the Sobolev space.
引用
收藏
页码:349 / 434
页数:85
相关论文
共 50 条
[41]   Lattices of subspaces of vector spaces with orthogonality [J].
Chajda, Ivan ;
Langer, Helmut .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
[42]   Interpolation Hilbert Spaces Between Sobolev Spaces [J].
Mikhailets, Vladimir A. ;
Murach, Aleksandr A. .
RESULTS IN MATHEMATICS, 2015, 67 (1-2) :135-152
[43]   Interpolation Hilbert Spaces Between Sobolev Spaces [J].
Vladimir A. Mikhailets ;
Aleksandr A. Murach .
Results in Mathematics, 2015, 67 :135-152
[44]   Best polynomial approximation on the triangle [J].
Feng, Han ;
Krattenthaler, Christian ;
Xu, Yuan .
JOURNAL OF APPROXIMATION THEORY, 2019, 241 :63-78
[45]   Composition operators on Sobolev spaces [J].
Vodopyanov, SK .
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS II, 2005, 382 :401-415
[46]   On one generalization of sobolev spaces [J].
Romanov, AS .
SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (04) :821-824
[47]   Sobolev spaces on compact groups [J].
Kumar, Manoj ;
Kumar, N. Shravan .
FORUM MATHEMATICUM, 2023, 35 (04) :901-911
[48]   Sobolev spaces on warped products [J].
Gigli, Nicola ;
Han, Bang-Xian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (08) :2059-2095
[49]   A Density Result for Homogeneous Sobolev Spaces on Planar Domains [J].
Nandi, Debanjan ;
Rajala, Tapio ;
Schultz, Timo .
POTENTIAL ANALYSIS, 2019, 51 (04) :483-498
[50]   Sobolev and Besov Classes on Infinite-Dimensional Spaces [J].
Bogachev, V. I. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) :59-80