Approximation and Orthogonality in Sobolev Spaces on a Triangle

被引:0
作者
Yuan Xu
机构
[1] University of Oregon,Department of Mathematics
来源
Constructive Approximation | 2017年 / 46卷
关键词
Approximation; Orthogonality; Sobolev space; Jacobi polynomials; Order of approximation; Triangle; 33C50; 41A10; 41A63; 42C05; 42C10; 65M70; 65N35;
D O I
暂无
中图分类号
学科分类号
摘要
Approximation by polynomials on a triangle is studied in the Sobolev space W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document} that consists of functions whose derivatives of up to r-th order have bounded L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm. The first part aims at understanding the orthogonal structure in the Sobolev space on the triangle, which requires explicit construction of an inner product that involves derivatives and its associated orthogonal polynomials, so that the projection operators of the corresponding Fourier orthogonal expansion commute with partial derivatives. The second part establishes the sharp estimate for the error of polynomial approximation in W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document}, when r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 1$$\end{document} and r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, where the polynomials of approximation are the partial sums of the Fourier expansions in orthogonal polynomials of the Sobolev space.
引用
收藏
页码:349 / 434
页数:85
相关论文
共 50 条
[31]   A note on optimal Hermite interpolation in Sobolev spaces [J].
Xu, Guiqiao ;
Yu, Xiaochen .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[32]   Nonclosedness of sets of neural networks in Sobolev spaces [J].
Mahan, Scott ;
King, Emily J. ;
Cloninger, Alex .
NEURAL NETWORKS, 2021, 137 :85-96
[33]   An extension of the notion of orthogonality to Banach spaces [J].
Saidi, FB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) :29-47
[34]   Orthogonality in smooth countably normed spaces [J].
Sarah Tawfeek ;
Nashat Faried ;
H. A. El-Sharkawy .
Journal of Inequalities and Applications, 2021
[35]   ON THE SOBOLEV ORTHOGONALITY OF CLASSICAL ORTHOGONAL POLYNOMIALS FOR NON STANDARD PARAMETERS [J].
Sanchez-Lara, J. F. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) :267-288
[36]   Approximation inL2 Sobolev spaces on the 2-sphere by quasi-interpolation [J].
S. M. Gomes ;
A. K. Kushpel ;
J. Levesley .
Journal of Fourier Analysis and Applications, 2001, 7 :283-295
[37]   Approximation in L2 Sobolev spaces on the 2-sphere by quasi-interpolation [J].
Gomes, SM ;
Kushpel, AK ;
Levesley, J .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (03) :283-295
[38]   ON T-ORTHOGONALITY IN BANACH SPACES [J].
Sain, Debmalya ;
Ghosh, Souvik ;
Paul, Kallol .
COLLOQUIUM MATHEMATICUM, 2023, 172 (02) :231-241
[39]   VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES [J].
N.B.OKELO ;
J.O.AGURE ;
P.O.OLECHE .
ActaMathematicaScientia, 2013, 33 (05) :1387-1397
[40]   VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES [J].
Okelo, N. B. ;
Agure, J. O. ;
Oleche, P. O. .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) :1387-1397