Approximation and Orthogonality in Sobolev Spaces on a Triangle

被引:0
作者
Yuan Xu
机构
[1] University of Oregon,Department of Mathematics
来源
Constructive Approximation | 2017年 / 46卷
关键词
Approximation; Orthogonality; Sobolev space; Jacobi polynomials; Order of approximation; Triangle; 33C50; 41A10; 41A63; 42C05; 42C10; 65M70; 65N35;
D O I
暂无
中图分类号
学科分类号
摘要
Approximation by polynomials on a triangle is studied in the Sobolev space W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document} that consists of functions whose derivatives of up to r-th order have bounded L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm. The first part aims at understanding the orthogonal structure in the Sobolev space on the triangle, which requires explicit construction of an inner product that involves derivatives and its associated orthogonal polynomials, so that the projection operators of the corresponding Fourier orthogonal expansion commute with partial derivatives. The second part establishes the sharp estimate for the error of polynomial approximation in W2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2^r$$\end{document}, when r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 1$$\end{document} and r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, where the polynomials of approximation are the partial sums of the Fourier expansions in orthogonal polynomials of the Sobolev space.
引用
收藏
页码:349 / 434
页数:85
相关论文
共 50 条
[21]   ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE [J].
Marriaga, Misael E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) :679-691
[22]   Randomized approximation of Sobolev embeddings, III [J].
Heinrich, Stefan .
JOURNAL OF COMPLEXITY, 2009, 25 (05) :473-507
[23]   Approximation of Functions by Fourier - Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces [J].
Magomed-Kasumov, M. G. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03) :295-304
[24]   POLYNOMIAL ASYMPTOTICS AND APPROXIMATION OF SOBOLEV FUNCTIONS [J].
HAJLASZ, P ;
KALAMAJSKA, A .
STUDIA MATHEMATICA, 1995, 113 (01) :55-64
[25]   Sobolev-type Lp-approximation orders of radial basis function interpolation to functions in fractional Sobolev spaces [J].
Lee, Mun Bae ;
Lee, Yeon Ju ;
Yoon, Jungho .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) :279-293
[26]   The orthogonality in the locally convex spaces [J].
Mazaheri, H. ;
Kazemi, R. .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05) :1101-1106
[27]   Lidstone approximation on the triangle [J].
Costabile, FA ;
Dell'Accio, F .
APPLIED NUMERICAL MATHEMATICS, 2005, 52 (04) :339-361
[28]   Lifting in Sobolev spaces [J].
Jean Bourgain ;
Haim Brezis ;
Petru Mironescu .
Journal d’Analyse Mathématique, 2000, 80 :37-86
[29]   A note on Sobolev spaces [J].
Zhikov V.V. .
Journal of Mathematical Sciences, 2005, 129 (1) :3593-3595
[30]   A note on optimal Hermite interpolation in Sobolev spaces [J].
Xu, Guiqiao ;
Yu, Xiaochen .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)