Dynamics of Solutions and Approximation for Partial Functional Differential Equations with Delay

被引:0
作者
Abdelhai Elazzouzi
Khalil Ezzinbi
机构
[1] Université Moulay Ismail,Département de Mathématiques, Faculté des Sciences et Techniques Errachidia
[2] Université Cadi Ayyad,Département de Mathématiques, Faculté des Sciences Semlalia
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Almost periodic solutions; Hille–Yosida condition; partial functional differential equation; exponential dichotomy; perturbation; 34k30; 35B15; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
This work aims to investigate the existence and uniqueness of almost periodic solution for partial functional differential equations with delay. Here, we assume that the undelayed part is not necessarily densely defined and satisfies the well-known Hille–Yosida condition, the delayed parts are assumed to be almost periodic with respect to the first argument and Lipschitz continuous with respect to the second argument. Using the exponential dichotomy and the contraction mapping principle, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution.
引用
收藏
页码:4091 / 4108
页数:17
相关论文
共 27 条
  • [1] Adimy M.(1998)Local existence and linearized stability for partial functional differential equations Dyn. Syst. Appl. 7 389-404
  • [2] Ezzinbi K.(2001)Existence of a periodic solution for some partial functional differential equations with infinite delay J. Math. Anal. Appl. 256 257-280
  • [3] Benkhalti R.(2000)A Masera type criterion for some partial functional differential equations Dyn. Syst. Appl. 9 221-228
  • [4] Bouzahir H.(1974)Strongly limit-compact maps Funkcioj Ekvacioj 17 31-38
  • [5] Ezzinbi K.(1987)Differential operators with nondense domains Annali Scuola Normale Superiore di Pisa 14 285-344
  • [6] Benkhalti R.(2005)BC-total stability and almost periodicity for some partial functional differential equations with infinte delay J. Appl. Math. Stochast. Anal. 3 259-274
  • [7] Ezzinbi K.(2002)Boundedness and almost periodicity of solutions of partial functional differential equations J. Differ. Eqs. 180 125-152
  • [8] Chow S.N.(1999)Asymptotic properties of mild solutions for nonautonomous evolution equations with applications to retarded differential equations J. Abstract Appl. Anal. 4 169-194
  • [9] Hale S.N.(2002)A characteristic equation for non-autonomous partial functional differential equations J. Differ. Eqs. 181 439-462
  • [10] Da Prato G.(1964)Periodic and almost periodic solutions of functional differential equations Arch. Ration. Mech. Anal. 15 289-304