Nonregular abnormal extremals of 2-distribution: Existence, second variation, and rigidity

被引:18
作者
Zelenko I. [1 ]
机构
[1] Department of Mathematics, Technion-Israel Inst. of Technology, Haifa
关键词
Nonholonomic distribution; abnormal extremal; Legendre-Clebsch condition; Lagrangian Grassmannian; Jacobi curve;
D O I
10.1023/A:1021766616913
中图分类号
学科分类号
摘要
We study existence and rigidity (W∞1-isolatedness) of nonregular abnormal extremals of completely nonholonomic 2-distribution (nonregularity means that such extremals do not satisfy the strong generalized Legendre-Clebsch condition). Introducing the notion of diagonal form of the second variation, we generalize some results of A. Agrachev and A. Sarychev about rigidity of regular abnormal extremals to the nonregular case. In order to reduce the second variation to the diagonal form, we construct a special curve of Lagrangian subspaces, a Jacobi curve. We show that certain geometric properties of this curve (like simplicity) imply the rigidity of the corresponding abnormal extremal.
引用
收藏
页码:347 / 383
页数:36
相关论文
共 21 条
[1]  
Agrachev A.A., Sarychev A.V., Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. Henri Poincaré, 13, 6, pp. 635-690, (1996)
[2]  
Agrachev A.A., Quadratic mappings in geometric control theory, (Russian) Itogi Nauki i Tekhniki
[3]  
Problemy Geometrii, VINITI, Acad. Nauk SSSR, 20, pp. 111-205, (1988)
[4]  
J. Sov. Math., 51, pp. 2667-2734, (1990)
[5]  
Agrachev A.A., Sarychev A.V., On abnormal extremals for Lagrange variational problems, J. Math. Syst., Estimat. Contr., 5, 1, pp. 1-31, (1995)
[6]  
Strong minimality of abnormal geodesics for 2-distribution, J. Dynam. Control Syst., 1, 2, pp. 139-176, (1995)
[7]  
Agrachev A.A., Gamkrelidze R.V., Exponential representation of flows and chronological calculus, (Russian) Mat. Sb., 107, pp. 467-532, (1978)
[8]  
Math. USSR Sb., 35, pp. 727-785, (1979)
[9]  
Feedback-invariant optimal control theory and differential geometry - I. Regular extremals, J. Dynam. Control Syst., 3, 3, pp. 343-389, (1997)
[10]  
Agrachev A.A., Feedback-invariant optimal control theory and differential geometry, II. Jacobi curves for singular extremals, J. Dynam. Control Syst., 4, 4, pp. 583-604, (1998)