On the Elastic Energy Density of Constrained Q-Tensor Models for Biaxial Nematics

被引:0
作者
Domenico Mucci
Lorenzo Nicolodi
机构
[1] Università degli Studi di Parma,Dipartimento di Matematica
来源
Archive for Rational Mechanics and Analysis | 2012年 / 206卷
关键词
Liquid Crystal; Nematic Liquid Crystal; Sobolev Class; Elastic Energy Density; Frame Indifference;
D O I
暂无
中图分类号
学科分类号
摘要
Within the Landau–de Gennes theory, the order parameter describing a biaxial nematic liquid crystal assigns a symmetric traceless 3 × 3 matrix Q with three distinct eigenvalues to every point of the region Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order parameter space is diffeomorphic to the eightfold quotient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^3/\mathcal{H}}$$\end{document} of the 3-sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^3}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} is the quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from Ω to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^3/\mathcal{H}}$$\end{document}. We express the (simplest form of the) Landau–de Gennes elastic free-energy density as a density defined on maps \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q: \Omega \to \mathbb{S}^3}$$\end{document}, whose functional dependence is restricted by the requirements that (1) it is well defined on the class of configuration maps from Ω to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^3/\mathcal{H}}$$\end{document} (residual symmetry) and (2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of this representation, we then discuss some properties of the corresponding energy functional, including coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also considered. In the discussion, we take advantage of the identification of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^3}$$\end{document} with the Lie group of unit quaternions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Sp(1) \cong SU(2)}$$\end{document} and of the relations between quaternions and rotations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4}$$\end{document}.
引用
收藏
页码:853 / 884
页数:31
相关论文
共 29 条
[1]  
Ball J.M.(2010)Nematic liquid crystals: from Maier-Saupe to a continuum theory Mol. Cryst. Liq. Cryst. 525 1-11
[2]  
Majumdar A.(2011)Orientability and energy minimization in liquid crystal models Arch. Rational Mech. Anal. 202 493-535
[3]  
Ball J.M.(1991)The approximation problem for Sobolev maps between manifolds Acta Math. 167 153-206
[4]  
Zarnescu A.(2007)Some questions related to the lifting problem in Sobolev spaces Contemp. Math. 446 125-152
[5]  
Bethuel F.(1998)Finite element analysis of the Landau–de Gennes minimization problem for liquid crystals SIAM J. Numer. Anal. 35 336-362
[6]  
Bethuel F.(1990)Liquid crystals with variable degree of orientation Arch. Rational Mech. Anal. 113 97-120
[7]  
Chiron D.(1958)I. Liquid crystals. On the theory of liquid crystals Discuss. Faraday Soc. 25 19-28
[8]  
Davis T.A.(1990)Liquid crystals: relaxed energies, dipoles, singular lines and singular points Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 415-437
[9]  
Gartland E.C.(2001)Static and dynamic theories of liquid crystals J. Partial Differ. Equ. 14 289-330
[10]  
Ericksen J.L.(2004)Liquid crystals: a missing phase found at last? Nature 430 413-414