Self-assembly of nanocrystal checkerboard patterns via non-specific interactions

被引:6
作者
Wang, Yufei [1 ,2 ]
Zhou, Yilong [3 ]
Yang, Quanpeng [3 ]
Basak, Rourav [4 ]
Xie, Yu [1 ]
Le, Dong [2 ,4 ]
Fuqua, Alexander D. [1 ]
Shipley, Wade [1 ,2 ]
Yam, Zachary [1 ]
Frano, Alex [4 ]
Arya, Gaurav [3 ]
Tao, Andrea R. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Nanoengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[4] Univ Calif San Diego, Dept Phys, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
NANOPARTICLES; NANOCUBES;
D O I
10.1038/s41467-024-47572-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials. The self-assembly of nanocrystals into checkerboard lattice patterns is difficult to control. Here, the authors investigate the formation of such patterns from hydrophilic/hydrophobic bifunctionalized Ag nanocubes and use multiscale simulations to understand the effects of physical forces.
引用
收藏
页数:9
相关论文
共 28 条
  • [1] Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/NMAT2404, 10.1038/nmat2404]
  • [2] X-ray cross-correlation analysis and local symmetries of disordered systems: General theory
    Altarelli, M.
    Kurta, R. P.
    Vartanyants, I. A.
    [J]. PHYSICAL REVIEW B, 2010, 82 (10)
  • [3] Nonadditivity of nanoparticle interactions
    Batista, Carlos A. Silvera
    Larson, Ronald G.
    Kotov, Nicholas A.
    [J]. SCIENCE, 2015, 350 (6257) : 138 - +
  • [4] Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA
    Belkin, Maxim
    Chao, Shu-Han
    Jonsson, Magnus P.
    Dekker, Cees
    Aksimentiev, Aleksei
    [J]. ACS NANO, 2015, 9 (11) : 10598 - 10611
  • [5] Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface
    Dong, Angang
    Chen, Jun
    Vora, Patrick M.
    Kikkawa, James M.
    Murray, Christopher B.
    [J]. NATURE, 2010, 466 (7305) : 474 - 477
  • [6] Patchy colloidal particles for programmed self-assembly
    Duguet, Etienne
    Hubert, Celine
    Chomette, Cyril
    Perro, Adeline
    Ravaine, Serge
    [J]. COMPTES RENDUS CHIMIE, 2016, 19 (1-2) : 173 - 182
  • [7] Gao B, 2012, NAT NANOTECHNOL, V7, P433, DOI [10.1038/nnano.2012.83, 10.1038/NNANO.2012.83]
  • [8] Ultrathin Porous Hydrocarbon Membranes Templated by Nanoparticle Assemblies
    Jackson, Grayson L.
    Lin, Xiao-Min
    Austin, Jotham
    Wen, Jianguo
    Jaeger, Heinrich M.
    [J]. NANO LETTERS, 2021, 21 (01) : 166 - 174
  • [9] Jones MR, 2010, NAT MATER, V9, P913, DOI [10.1038/NMAT2870, 10.1038/nmat2870]
  • [10] Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice
    Kalsin, AM
    Fialkowski, M
    Paszewski, M
    Smoukov, SK
    Bishop, KJM
    Grzybowski, BA
    [J]. SCIENCE, 2006, 312 (5772) : 420 - 424