On the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document}

被引:0
作者
Bahar Demirtürk Bitim
机构
[1] İzmir Bakırçay University,Department of Fundamental Sciences, Faculty of Engineering and Architecture
关键词
Diophantine equation; Lower bounds; Logarithmic method; Primary 11B39; 11J86; 11D61;
D O I
10.1007/s10998-019-00287-0
中图分类号
学科分类号
摘要
In this paper we find (n, m, a) solutions of the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document}, where Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}$$\end{document} and Lm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{m}$$\end{document} are Lucas numbers with a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document} and n>m≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>m\ge 0$$\end{document}. For proving our theorem, we use lower bounds for linear forms in logarithms and Baker–Davenport reduction method in Diophantine approximation.
引用
收藏
页码:210 / 217
页数:7
相关论文
共 20 条
[1]  
Baker A(1967)Linear forms in the logarithms of algebraic numbers Matematika 11 155-166
[2]  
Bravo JJ(2014)Powers of two as sums of two Lucas numbers J. Integer Seq. 17 1-12
[3]  
Luca F(2015)On the Diophantine equation Quaest. Math. 39 391-400
[4]  
Bravo JJ(2006)Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers Ann. Math. 163 969-1018
[5]  
Luca F(1998)A generalization of a theorem of Baker and Davenport Q. J. Math. Oxford Ser. (2) 49 291-306
[6]  
Bugeaud Y(2018)On perfect powers that are sums of two Fibonacci numbers J. Number Theor. 189 90-96
[7]  
Mignotte M(2000)An Explicit lower bound for a homogenous rational linear form in the logarithms of algebraic numbers II Izv. Ross. Akad. Nauk Ser. Mat. 64 1217-1269
[8]  
Siksek S(1963)Advanced problem H-2 Fibonacci Q. 1 46-127
[9]  
Dujella A(1983)Full cubes in the Fibonacci sequence Publ. Math. Debr. 30 117-131
[10]  
Pethö A(2018)Effective Resolution of Diophantine equations of the form Monatsh Math 185 103-218