q-Besselian Frames in Banach Spaces

被引:0
作者
Yu Can Zhu
机构
[1] Fuzhou University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
-frame; -Riesz basis; -Besselian frame; (; )-near Riesz basis; 42C99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where σ is a finite subset of positive integers and 1/p + 1/q = 1 with p > 1, q > 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X* that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\{ {x_{n} } \right\}}^{\infty }_{{n = 1}} \subset X $$\end{document} is a q-Besselian frame for X, then there exists a p-Besselian frame \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\{ {y^{ * }_{n} } \right\}}^{\infty }_{{n = 1}} \subset X^{ * } $$\end{document} for X* such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x = {\sum\nolimits_{n = 1}^\infty {y^{ * }_{n} } }{\left( x \right)}x_{n} $$\end{document} for all x ∈ X, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x^{ * } = {\sum\nolimits_{n = 1}^\infty {x^{ * } } }{\left( {x_{n} } \right)}y^{ * }_{n} $$\end{document} for all x* ∈ X*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.
引用
收藏
页码:1707 / 1718
页数:11
相关论文
共 12 条
[1]  
Duffin undefined(1952)undefined Trans. Amer. Math. Soc. 72 341-undefined
[2]  
Casazza undefined(2000)undefined Taiwanese J. of Math. 4 129-undefined
[3]  
Casazza undefined(1997)undefined J. Fourier Anal. Appl. 3 543-undefined
[4]  
Casazza undefined(1998)undefined SIAM J. Math. Anal. 29 266-undefined
[5]  
Christensen undefined(1995)undefined Proc. Amer. Math. Soc. 123 2199-undefined
[6]  
Christensen undefined(1995)undefined Proc. Amer. Math. Soc. 123 1217-undefined
[7]  
Favier undefined(1995)undefined Appl. Comput. Harm. Anal. 2 160-undefined
[8]  
Holub undefined(1994)undefined Proc. Amer. Math. Soc. 122 779-undefined
[9]  
Zhu undefined(2001)undefined Chin. Ann. of Math. 22A 359-undefined
[10]  
Aldroubi undefined(2001)undefined J. Fourier Anal. Appl. 7 1-undefined