Almost complex parallelizable manifolds: Kodaira dimension and special structures

被引:0
作者
Andrea Cattaneo
Antonella Nannicini
Adriano Tomassini
机构
[1] Università di Parma,Dipartimento di Scienze Matematiche, Fisiche e Informatiche Unità di Matematica e Informatica
[2] Università degli Studi di Firenze,Dipartimento di Matematica ed Informatica “U. Dini”
来源
manuscripta mathematica | 2024年 / 173卷
关键词
32Q60; 53C56;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Kodaira dimension of a real parallelizable manifold M, with an almost complex structure J in standard form with respect to a given parallelism. For X=(M,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = (M, J)$$\end{document} we give conditions under which kod(X)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{kod}\,}}(X) = 0$$\end{document}. We provide examples in the case M=G×G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = G \times G$$\end{document}, where G is a compact connected real Lie group. Finally we describe geometrical properties of real parallelizable manifolds in the framework of statistical geometry.
引用
收藏
页码:1123 / 1145
页数:22
相关论文
共 21 条
[1]  
Abbena E(1986)Hermitian left invariant metrics on complex Lie groups and cosymplectic Hermitian manifolds Boll. Dell’un. Mat. Ital. A (6) 5 371-379
[2]  
Grassi A(2010)Existence of minimal models for varieties of log general type J. Am. Math. Soc. 23 405-468
[3]  
Birkar C(2022)On statistical and semi-weyl manifolds admitting torsion Mathematics 10 990-500
[4]  
Cascini P(1953)A class of compact, complex manifolds which are not algebraic Ann. Math., Second Ser. 58 494-1842
[5]  
Hacon CD(2020)Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection Ann. Mat. Pura Appl. (4) 199 1815-308
[6]  
McKernan J(2021)On Kodaira dimension of almost complex Int. J. Math. 32 2150075-354
[7]  
Blaga AM(2021)-dimensional solvmanifolds without complex structures Adv. Math. 391 107970-undefined
[8]  
Nannicini A(2011)Dolbeault cohomology for almost complex manifolds Arch. Math. (Brno) 47 293-undefined
[9]  
Calabi E(1958)A class of metrics on tangent bundles n the geometry of the tangent bundle of pseudo-Riemannian manifolds Tohoku Math. J. 10 338-undefined
[10]  
Eckmann B(undefined)On the differential geometry of the tangent bundles of Riemannian manifolds undefined undefined undefined-undefined