Limit theorems for the canonical von Mises statistics with dependent data

被引:0
作者
I. S. Borisov
A. A. Bystrov
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2006年 / 47卷
关键词
limit theorems; stochastic integral; multiple stochastic integral; elementary stochastic measure; Gaussian processes; stationary sequences of random variables; mixing; -and ; -statistics;
D O I
暂无
中图分类号
学科分类号
摘要
We study the limit behavior of the canonical (i.e., degenerate) von Mises statistics based on samples from a sequence of weakly dependent stationary observations satisfying the ψ-mixing condition. The corresponding limit distributions are defined by the multiple stochastic integrals of nonrandom functions with respect to the nonorthogonal Hilbert noises generated by Gaussian processes with nonorthogonal increments.
引用
收藏
页码:980 / 989
页数:9
相关论文
共 21 条
  • [1] Borisov I. S.(2006)Constructing a stochastic integral of a nonrandom function without orthogonality of the noise Theory Probab. Appl. 50 53-74
  • [2] Bystrov A. A.(1947)On the asymptotic distribution of differentiable statistical functions Ann. Math. Statist. 18 309-348
  • [3] Von Mises R.(1948)A class of statistics with asymptotically normal distribution Ann. Math. Statist. 19 293-325
  • [4] Hoeffding W.(2000)The central limit theorem for generalized canonical von Mises statistics Siberian Adv. Math. 10 1-14
  • [5] Borisov I. S.(1962)Von Mises’ theorem on the limit behavior of functionals of the empirical distribution functions and its statistical applications Theory Probab. Appl. 7 26-60
  • [6] Sakhanenko L. A.(1951)Multiple Wiener integral J. Math. Soc. Japan 3 157-169
  • [7] Filippova A. A.(1983)Symmetric statistics, Poisson point processes and multiple Wiener integrals Ann. Statist. 11 739-745
  • [8] Itô K.(1979)Orthogonal expansions and Austral. J. Statist. 21 221-237
  • [9] Dynkin E. B.(1980)-statistics Ann. Statist. 8 165-170
  • [10] Mandelbaum A.(1989)Asymptotic distribution of symmetric statistics Ann. Statist. 17 1767-1783