Spectral Measures Associated to Rank two Lie Groups and Finite Subgroups of GL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${GL(2,\mathbb{Z})}$$\end{document}

被引:0
作者
David E. Evans
Mathew Pugh
机构
[1] Cardiff University,School of Mathematics
关键词
Irreducible Representation; Spectral Measure; Weyl Group; Fundamental Domain; Irreducible Character;
D O I
10.1007/s00220-015-2434-5
中图分类号
学科分类号
摘要
Spectral measures for fundamental representations of the rank two Lie groups SU(3), Sp(2) and G2 have been studied. Since these groups have rank two, these spectral measures can be defined as measures over their maximal torus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^2}$$\end{document} and are invariant under an action of the corresponding Weyl group, which is a subgroup of GL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${GL(2,\mathbb{Z})}$$\end{document}. Here we consider spectral measures invariant under an action of the other finite subgroups of GL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${GL(2,\mathbb{Z})}$$\end{document}. These spectral measures are all associated with fundamental representations of other rank two Lie groups, namely T2=U(1)×U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^2=U(1) \times U(1)}$$\end{document}, U(1)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U(1) \times SU(2)}$$\end{document}, U(2), SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SU(2) \times SU(2)}$$\end{document}, SO(4) and PSU(3).
引用
收藏
页码:811 / 850
页数:39
相关论文
共 21 条
  • [1] Banica T.(2007)Spectral measures of small index principal graphs Commun. Math. Phys. 269 259-281
  • [2] Bisch D.(2000)Modular invariants from subfactors: type I coupling matrices and intermediate subfactors Commun. Math. Phys. 213 267-289
  • [3] Böckenhauer J.(1999)On Commun. Math. Phys. 208 429-487
  • [4] Evans D.E.(2010)-induction, chiral generators and modular invariants for subfactors Groups Geom. Dyn. 4 91-126
  • [5] Böckenhauer J.(2010)Random subgroups of Thompson’s group Commun. Math. Phys. 295 363-413
  • [6] Evans D.E.(2011)Spectral measures and generating series for nimrep graphs in subfactor theory Commun. Math. Phys. 301 771-809
  • [7] Kawahigashi Y.(2015)Spectral measures and generating series for nimrep graphs in subfactor theory II: Commun. Math. Phys. 337 1161-1197
  • [8] Cleary S.(2002)(3) Nuclear Phys. B 639 471-501
  • [9] Murray M.(1983)Spectral measures for Invent. Math. 72 1-25
  • [10] Rechnitzer A.(1998)Boundary states for WZW models Invent. Math. 133 467-538