Global weak solutions to the three-dimensional inviscid Boussinesq system in the presence of magnetic field

被引:0
作者
Yang Li
机构
[1] Anhui University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Boussinesq system; Weak solutions; Convex integration; 35M11; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the inviscid Boussinesq system in the presence of magnetic field in three space dimensions. We prove that the system admits infinitely many global weak solutions with large initial data. Our main tool is based on the convex integration method developed by De Lellis and Székelyhidi in the context of incompressible Euler system.
引用
收藏
相关论文
共 43 条
[1]  
Bian D(2016)Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection Discrete Contin. Dyn. Syst. Ser. 9 1591-1611
[2]  
Chae D(2006)Global regularity for the 2D Boussinesq equations with partial viscosity terms Adv. Math. 203 497-513
[3]  
Chiodaroli E(2014)A counterexample to well-posedness of entropy solutions to the compressible Euler system J. Hyperbolic Differ. Equ. 11 493-519
[4]  
Chiodaroli E(2017)Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations Commun. Math. Phys. 353 1201-1216
[5]  
Michálek M(2015)On the weak solutions to the equations of a compressible heat-conducting gas Ann. Inst. H. Poincaré Anal. Non Linéaire 32 225-243
[6]  
Chiodaroli E(2011)Lack of uniqueness for weak solutions of the incompressible porous media equation Arch. Ration. Mech. Anal. 200 725-746
[7]  
Feireisl E(2008)The Leray and Fujita–Kato theorems for the Boussinesq system with partial viscosity Bull. Soc. Math. Fr. 136 261-309
[8]  
Kreml O(2009)The Euler equations as a differential inclusion Ann. Math. 2 1417-1436
[9]  
Córdoba D(2010)On admissibility criteria for weak solutions of the Euler equations Arch. Ration. Mech. Anal. 195 225-260
[10]  
Faraco D(2015)Well/ill posedness for the Euler–Korteweg–Poisson system and related problems Commun. Partial Differ. Equ. 40 1314-1335