Balls in generalizations of metric spaces

被引:0
作者
Xun Ge
Shou Lin
机构
[1] Soochow University,School of Mathematical Sciences
[2] Ningde Normal University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2016卷
关键词
ball; partial b-metric space; cone metric space; 54A10; 54E35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses balls in partial b-metric spaces and cone metric spaces, respectively. Let (X,pb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,p_{b})$\end{document} be a partial b-metric space in the sense of Mustafa et al. For the family △ of all pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{b}$\end{document}-open balls in (X,pb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,p_{b})$\end{document}, this paper proves that there are x,y∈B∈△\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x,y\in B\in\triangle$\end{document} such that B′⊈B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B'\nsubseteq B$\end{document} for all B′∈△\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B'\in\triangle$\end{document}, where B and B′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B'$\end{document} are with centers x and y, respectively. This result shows that △ is not a base of any topology on X, which shows that a proposition and a claim on partial b-metric spaces are not true. By some relations among ≪, <, and ≤ in cone metric spaces, this paper also constructs a cone metric space (X,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,d)$\end{document} and shows that {y∈X:d(x,y)≪ε}‾≠{y∈X:d(x,y)≤ε}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\{y\in X:d(x,y)\ll\varepsilon\}}\ne\{y\in X:d(x,y)\le\varepsilon\}$\end{document} in general, which corrects an error on cone metric spaces. However, it must be emphasized that these corrections do not affect the rest of the results in the relevant papers.
引用
收藏
相关论文
共 19 条
[1]  
Shukla S(2014)Partial b-metric spaces and fixed point theorems Mediterr. J. Math. 11 703-711
[2]  
Huang LG(2007)Cone metric spaces and fixed point theorems of contractive mappings J. Math. Anal. Appl. 332 1468-1476
[3]  
Zhang X(2013)Some common fixed point results in ordered partial b-metric spaces J. Inequal. Appl. 2013 489-496
[4]  
Mustafa Z(2014)Fixed point results via J. Inequal. Appl. 2014 190-193
[5]  
Roshan JR(2010)-admissible mappings and cyclic contractive mappings in partial b-metric spaces Acta Math. Sin. 26 undefined-undefined
[6]  
Parvaneh V(2014)Cone metric spaces and fixed point theorems in diametrically contractive mappings J. Inequal. Appl. 2014 undefined-undefined
[7]  
Kadelburg Z(2011)Common fixed point theorems for generalized expansive mappings in partial b-metric spaces and an application Topol. Appl. 158 undefined-undefined
[8]  
Latif A(undefined)On the metrizability of cone metric space undefined undefined undefined-undefined
[9]  
Roshan JR(undefined)undefined undefined undefined undefined-undefined
[10]  
Parvaneh V(undefined)undefined undefined undefined undefined-undefined