Analysis and synchronization for a new fractional-order chaotic system with absolute value term

被引:0
作者
Lihe Huang
Aimin Liu
机构
[1] Yulin Normal University,Department of Experiment and Equipment
来源
Nonlinear Dynamics | 2012年 / 70卷
关键词
Fractional-order; Chaos; Synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
A new fractional-order chaotic system with absolute value term is introduced. Some dynamical behaviors are investigated and analyzed. Furthermore, synchronization of this system is achieved by utilizing the drive-response method and the feedback method. The suitable parameters for achieving synchronization are studied. Both the theoretical analysis and numerical simulations show the effectiveness of the two methods.
引用
收藏
页码:601 / 608
页数:7
相关论文
共 51 条
  • [1] Li C.(2003)Generating chaos by Oja’s rule Neurocomputing 55 731-738
  • [2] Liao X.F.(2012)Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system Nonlinear Dyn. 67 89-96
  • [3] Yu J.B.(2005)Generating chaos via decentralized linear state feedback and a class of nonlinear functions Chaos Solitons Fractals 25 403-413
  • [4] Liu Y.J.(2010)Dynamics of a new Lorenz-like chaotic system Nonlinear Anal., Real World Appl. 11 2563-2572
  • [5] Lu J.G.(1977)The development of fractional calculus 1695–1900 Historia Math. 4 75-89
  • [6] Liu Y.J.(2005)What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension Chaos Solitons Fractals 26 867-879
  • [7] Yang Q.G.(2001)Fractional master equation: non-standard analysis and Liouville–Riemann derivative Chaos Solitons Fractals 12 2577-2587
  • [8] Ross B.(1999)Fractional integral representation of master equation Chaos Solitons Fractals 10 1545-1558
  • [9] He G.L.(1995)Chaos in a fractional order Chua’s system IEEE Trans. CAS I 42 485-490
  • [10] Zhou S.P.(2009)Dynamic analysis of a fractional-order Lorenz chaotic system Chaos Solitons Fractals 42 1181-1189