Hypergraph Turán Numbers of Vertex Disjoint Cycles

被引:0
作者
Ran Gu
Xue-liang Li
Yong-tang Shi
机构
[1] Nankai University,Center for Combinatorics and LPMC
来源
Acta Mathematicae Applicatae Sinica, English Series | 2022年 / 38卷
关键词
Turán number; cycles; extremal hypergraphs; 05D05; 05C35; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
The Turán number of a k-uniform hypergraph H, denoted by exk(n;H), is the maximum number of edges in any k-uniform hypergraph F on n vertices which does not contain H as a subgraph. Let Cℓ(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}_\ell ^{(k)}$$\end{document} denote the family of all k-uniform minimal cycles of length ℓ, S(ℓ1,⋯,ℓr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}({\ell _1}, \cdots ,{\ell _r})$$\end{document} denote the family of hypergraphs consisting of unions of r vertex disjoint minimal cycles of length ℓ1,…,ℓr, respectively, and ℂℓ(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C}_\ell ^{(k)}$$\end{document} denote a k-uniform linear cycle of length ℓ. We determine precisely exk(n;S(ℓ1,⋯,ℓr))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e{x_k}\left( {n;{\cal S}({\ell _1}, \cdots ,{\ell _r})} \right)$$\end{document} and exk(n;ℂℓ1(k),…,ℂℓr(k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e{x_k}\left( {n;\mathbb{C}_{{\ell _1}}^{(k)}, \ldots ,\mathbb{C}_{{\ell _r}}^{(k)}} \right)$$\end{document} for sufficiently large n. Our results extend recent results of Füredi and Jiang who determined the Turán numbers for single k-uniform minimal cycles and linear cycles.
引用
收藏
页码:229 / 234
页数:5
相关论文
共 11 条
[1]  
Füredi Z(2014)Hypergraph Turán numbers of linear cycles J. Combin. Theory Ser. A 123 252-270
[2]  
Jiang T(2014)Exact Solution of the hypergraph Turán problem for Combinatorica 34 299-322
[3]  
Füredi Z(2010)-uniform linear paths Electronic Notes in Disc. Math. 36 655-662
[4]  
Jiang T(2006)Hypergraph extensions of the Erdős-Gallai theorem SIAM J. Discrete Math. 20 1031-1041
[5]  
Seiver R(undefined)Set systems with no singleton intersection undefined undefined undefined-undefined
[6]  
Györi E(undefined)undefined undefined undefined undefined-undefined
[7]  
Katona G(undefined)undefined undefined undefined undefined-undefined
[8]  
Lemons N(undefined)undefined undefined undefined undefined-undefined
[9]  
Keevash P(undefined)undefined undefined undefined undefined-undefined
[10]  
Mubayi D(undefined)undefined undefined undefined undefined-undefined