Traveling wave front and stability as planar wave of reaction diffusion equations with nonlocal delays

被引:0
|
作者
Guangying Lv
Mingxin Wang
机构
[1] Henan University,Institute of Contemporary Mathematics
[2] Henan University,School of Mathematics and Information Science
[3] Harbin Institute of Technology,Natural Science Research Center
关键词
35B35; 35K57; Traveling wave fronts; Stability; Sup-sub solution; Reaction diffusion system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with traveling wave front and the stability as planar wave of reaction diffusion system on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n}}$$\end{document}, where n ≥ 2. Existence and asymptotic behavior of traveling wave front are discussed firstly. The stability as planar wave is established secondly by using super-sub solution method. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar wave as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t \rightarrow {\infty}}$$\end{document} and the convergence is uniform in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n}}$$\end{document}.
引用
收藏
页码:1005 / 1023
页数:18
相关论文
共 50 条