On the Prolate Spheroidal Wave Functions and Hardy’s Uncertainty Principle

被引:0
|
作者
Elmar Pauwels
Maurice de Gosson
机构
[1] University of Vienna,NuHAG, Faculty of Mathematics
来源
Journal of Fourier Analysis and Applications | 2014年 / 20卷
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; 33E10; 42B10; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a weak version of Hardy’s uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R})$$\end{document}. A weak version of Hardy’s uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:10
相关论文
共 50 条
  • [31] Prolate spheroidal wave functions on a disc-integration and approximation of two-dimensional bandlimited functions
    Shkolnisky, Yoel
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 22 (02) : 235 - 256
  • [32] Generalized Prolate Spheroidal Wave Functions: Spectral Analysis and Approximation of Almost Band-Limited Functions
    Karoui, Abderrazek
    Souabni, Ahmed
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (02) : 383 - 412
  • [33] Frequency Domain Multi-Carrier Modulation Based on Prolate Spheroidal Wave Functions
    Wang, Hongxing
    Lu, Faping
    Liu, Chuanhui
    Liu, Xiao
    Kang, Jiafang
    IEEE ACCESS, 2020, 8 (08): : 99665 - 99680
  • [34] Numerical reconstruction from the Fourier transform on the ball using prolate spheroidal wave functions
    Isaev, Mikhail
    Novikov, Roman G.
    Sabinin, Grigory, V
    INVERSE PROBLEMS, 2022, 38 (10)
  • [35] Generalized Prolate Spheroidal Wave Functions: Spectral Analysis and Approximation of Almost Band-Limited Functions
    Abderrazek Karoui
    Ahmed Souabni
    Journal of Fourier Analysis and Applications, 2016, 22 : 383 - 412
  • [36] On hp-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme
    Wang, Li-Lian
    Zhang, Jing
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 377 - 398
  • [37] The Hardy Uncertainty Principle Revisited
    Cowling, M.
    Escauriaza, L.
    Kenig, C. E.
    Ponce, G.
    Vega, L.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (06) : 2007 - 2025
  • [38] Extreme value prediction of nonlinear ship loads by FORM using Prolate Spheroidal Wave Functions
    Takami, Tomoki
    Iijima, Kazuhiro
    Jensen, Jorgen Juncher
    MARINE STRUCTURES, 2020, 72
  • [39] Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions
    Tomoki Takami
    Ulrik Dam Nielsen
    Jørgen Juncher Jensen
    Journal of Marine Science and Technology, 2021, 26 : 772 - 791
  • [40] Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions
    Takami, Tomoki
    Nielsen, Ulrik Dam
    Jensen, Jorgen Juncher
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2021, 26 (03) : 772 - 791