On the Prolate Spheroidal Wave Functions and Hardy’s Uncertainty Principle

被引:0
|
作者
Elmar Pauwels
Maurice de Gosson
机构
[1] University of Vienna,NuHAG, Faculty of Mathematics
来源
Journal of Fourier Analysis and Applications | 2014年 / 20卷
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; 33E10; 42B10; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a weak version of Hardy’s uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R})$$\end{document}. A weak version of Hardy’s uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:10
相关论文
共 50 条
  • [21] New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues
    Karoui, Abderrazek
    Moumni, Tahar
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (03) : 269 - 289
  • [22] Reconstruction from the Fourier transform on the ball via prolate spheroidal wave functions
    Isaev, Mikhail
    Novikov, Roman G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 318 - 333
  • [23] Gaussian Bounds for the Heat Kernel Associated to Prolate Spheroidal Wave Functions with Applications
    Aline Bonami
    Gerard Kerkyacharian
    Pencho Petrushev
    Constructive Approximation, 2023, 57 : 351 - 403
  • [24] High-frequeney asymptotic expansions for certain Prolate Spheroidal Wave Functions
    Xiao, H
    Rokhlin, V
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (06) : 575 - 596
  • [25] Gaussian Bounds for the Heat Kernel Associated to Prolate Spheroidal Wave Functions with Applications
    Bonami, Aline
    Kerkyacharian, Gerard
    Petrushev, Pencho
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (02) : 351 - 403
  • [26] Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization
    Zhang, Xuxin
    Lou, Jingjun
    Zhu, Shijian
    Lu, Jinfang
    Li, Ronghua
    SENSORS, 2023, 23 (19)
  • [27] Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation
    Lin, Wenbin
    Kovvali, Narayan
    Carin, Lawrence
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 78 - 85
  • [28] A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions
    Schmutzhard, Sebastian
    Hrycak, Tomasz
    Feichtinger, Hans G.
    NUMERICAL ALGORITHMS, 2015, 68 (04) : 691 - 710
  • [29] Efficient Methods for the Chebyshev-Type Prolate Spheroidal Wave Functions and Corresponding Eigenvalues
    Tian, Yan
    Liu, Guidong
    MATHEMATICS, 2024, 12 (06)
  • [30] A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions
    Kong, Wai Yip
    Rokhlin, Vladimir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 33 (02) : 226 - 260