Homogeneity of a Distance-Regular Graph Which Supports a Spin Model

被引:0
作者
Brian Curtin
Kazumasa Nomura
机构
[1] University of South Florida,Department of Mathematics
[2] Tokyo Medical and Dental University,College of Liberal Arts and Sciences
来源
Journal of Algebraic Combinatorics | 2004年 / 19卷
关键词
distance-regular graph; 1-homogeneous; spin model;
D O I
暂无
中图分类号
学科分类号
摘要
A spin model is a square matrix that encodes the basic data for a statistical mechanical construction of link invariants due to V.F.R. Jones. Every spin model W is contained in a canonical Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). In this paper we study the distance-regular graphs Γ whose Bose-Mesner algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} satisfies W ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}(W). Suppose W has at least three distinct entries. We show that Γ is 1-homogeneous and that the first and the last subconstituents of Γ are strongly regular and distance-regular, respectively.
引用
收藏
页码:257 / 272
页数:15
相关论文
共 50 条
  • [31] The Terwilliger algebra of a 2-homogeneous bipartite distance-regular graph
    Curtin, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (01) : 125 - 141
  • [32] The displacement and split decompositions for a Q-polynomial distance-regular graph
    Terwilliger, P
    GRAPHS AND COMBINATORICS, 2005, 21 (02) : 263 - 276
  • [33] On almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    Garriga, E.
    Gorissen, B. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1094 - 1113
  • [34] Two distance-regular graphs
    Brouwer, Andries E.
    Pasechnik, Dmitrii V.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (03) : 403 - 407
  • [35] Two distance-regular graphs
    Andries E. Brouwer
    Dmitrii V. Pasechnik
    Journal of Algebraic Combinatorics, 2012, 36 : 403 - 407
  • [36] Tight Distance-Regular Graphs
    Aleksandar Jurišić
    Jack Koolen
    Paul Terwilliger
    Journal of Algebraic Combinatorics, 2000, 12 : 163 - 197
  • [37] Tight distance-regular graphs
    Jurisic, A
    Koolen, J
    Terwilliger, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (02) : 163 - 197
  • [38] Distance-regular graphs with strongly regular subconstituents
    Kasikova, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (03) : 247 - 252
  • [39] Distance-Regular Graphs with Strongly Regular Subconstituents
    Anna Kasikova
    Journal of Algebraic Combinatorics, 1997, 6 : 247 - 252
  • [40] The subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two
    MacLean, Mark S.
    Terwilliger, Paul
    DISCRETE MATHEMATICS, 2008, 308 (07) : 1230 - 1259