Option pricing when correlations are stochastic: An analytical framework

被引:0
作者
Da Fonseca J. [1 ,2 ]
Grasselli M. [1 ,3 ]
Tebaldi C. [4 ,5 ]
机构
[1] Ecole Supérieure d'Ingénieurs Léonard de Vinci, Departement Mathématiques et Ingénierie Financière
[2] Zeliade Systems, Paris 75001, 56, Rue Jean-Jacques Rousseau
[3] Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, Padova
[4] IMQ, Università Bocconi Milano, Milano 20139
[5] Università degli Studi di Verona, Verona
关键词
Best-of basket option; FFT; Stochastic correlation; Wishart processes;
D O I
10.1007/s11147-008-9018-x
中图分类号
学科分类号
摘要
In this paper we develop a novel market model where asset variances-covariances evolve stochastically. In addition shocks on asset return dynamics are assumed to be linearly correlated with shocks driving the variance-covariance matrix. Analytical tractability is preserved since the model is linear-affine and the conditional characteristic function can be determined explicitly. Quite remarkably, the model provides prices for vanilla options consistent with observed smile and skew effects, while making it possible to detect and quantify the correlation risk in multiple-asset derivatives like basket options. In particular, it can reproduce and quantify the asymmetric conditional correlations observed on historical data for equity markets. As an illustrative example, we provide explicit pricing formulas for rainbow "Best-of" options. © 2008 Springer Science+Business Media, LLC.
引用
收藏
页码:151 / 180
页数:29
相关论文
共 26 条
  • [1] Ang A., Chen J., Asymmetric correlations on equity portfolios, Journal of Financial Economics, 63, pp. 443-494, (2002)
  • [2] Bakshi G.S., Madan D.B., Spanning and derivative-security valuation, Journal of Financial Economics, 55, pp. 205-238, (2000)
  • [3] Bru M.F., Wishart processes, Journal of Theoretical Probability, 4, pp. 725-743, (1991)
  • [4] Buraschi A., Porchia P., Trojani F., Correlation Hedging, (2006)
  • [5] Carr P., Madan D.B., Option valuation using the fast Fourier transform, Journal of Computational Finance, 2, pp. 61-73, (1999)
  • [6] Da Fonseca J., Grasselli M., Ielpo F., Estimating the Wishart Affine Stochastic Correlation Model Using the Empirical Characteristic Function, (2007)
  • [7] Da Fonseca J., Grasselli M., Tebaldi C., Wishart multi-dimensional stochastic volatility, Quantitative Finance as "a Multifactor Volatility Heston Model", (2005)
  • [8] Dai Q., Singleton K., Specification analysis of affine term structure models, The Journal of Finance, 55, pp. 1943-1978, (2000)
  • [9] Driessen J., Maenhout P.J., Vilkov G., Option implied correlations and the price of correlation risk, EFA 2005 Moscow Meetings, (2005)
  • [10] Duffee G.R., Term premia and interest rate forecasts in affine models, Journal of Finance, 57, pp. 405-443, (2002)