We present a formula to compute the Brasselet number of f:(Y,0)→(C,0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:(Y,0)\rightarrow (\mathbb {C}, 0)$$\end{document} where Y⊂X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Y\subset X$$\end{document} is a non-degenerate complete intersection in a toric variety X. As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when (X,0)=(Cn,0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,0) = (\mathbb {C}^n,0)$$\end{document} we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in X.