Brasselet number and Newton polygons

被引:0
|
作者
Thaís M. Dalbelo
Luiz Hartmann
机构
[1] Universidade Federal de São Carlos (UFSCar),Department of Mathematics
来源
manuscripta mathematica | 2020年 / 162卷
关键词
Primary 14M25; 55S35; Secondary 14B05; 32S05; 58K45;
D O I
暂无
中图分类号
学科分类号
摘要
We present a formula to compute the Brasselet number of f:(Y,0)→(C,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:(Y,0)\rightarrow (\mathbb {C}, 0)$$\end{document} where Y⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\subset X$$\end{document} is a non-degenerate complete intersection in a toric variety X. As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when (X,0)=(Cn,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,0) = (\mathbb {C}^n,0)$$\end{document} we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in X.
引用
收藏
页码:241 / 269
页数:28
相关论文
共 50 条
  • [21] Newton polygons of Hecke operators
    Liubomir Chiriac
    Andrei Jorza
    Annales mathématiques du Québec, 2021, 45 : 271 - 290
  • [22] NEWTON POLYGONS OF JACOBIAN PAIRS
    LANG, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 72 (01) : 39 - 51
  • [23] ESTIMATION OF LOJASIEWICZ EXPONENTS AND NEWTON POLYGONS
    LICHTIN, B
    INVENTIONES MATHEMATICAE, 1981, 64 (03) : 417 - 429
  • [24] Erratum to: Newton polygons and curve gonalities
    Wouter Castryck
    Filip Cools
    Journal of Algebraic Combinatorics, 2012, 35 (3) : 367 - 372
  • [25] Newton Polygons for a Variant of the Kloosterman Family
    Bellovin, Rebecca
    Garthwaite, Sharon Anne
    Ozman, Ekin
    Pries, Rachel
    Williams, Cassandra
    Zhu, Hui June
    WOMEN IN NUMBERS 2: RESEARCH DIRECTIONS IN NUMBER THEORY, 2013, 606 : 47 - 63
  • [26] NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS
    SPERBER, S
    ASTERISQUE, 1984, (119-) : 267 - 330
  • [27] Higher Newton polygons and integral bases
    Guardia, Jordi
    Montes, Jesus
    Nart, Enric
    JOURNAL OF NUMBER THEORY, 2015, 147 : 549 - 589
  • [28] Variance of the spectral numbers and Newton polygons
    Brélivet, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (04): : 333 - 342
  • [29] On a conjecture of Wan about limiting Newton polygons
    Ouyang, Yi
    Yang, Jinbang
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 64 - 71
  • [30] Newton polygons and the Prouhet - Tarry - Escott problem
    Filaseta, Michael
    Markovich, Maria
    JOURNAL OF NUMBER THEORY, 2017, 174 : 384 - 400