Brasselet number and Newton polygons

被引:0
|
作者
Thaís M. Dalbelo
Luiz Hartmann
机构
[1] Universidade Federal de São Carlos (UFSCar),Department of Mathematics
来源
manuscripta mathematica | 2020年 / 162卷
关键词
Primary 14M25; 55S35; Secondary 14B05; 32S05; 58K45;
D O I
暂无
中图分类号
学科分类号
摘要
We present a formula to compute the Brasselet number of f:(Y,0)→(C,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:(Y,0)\rightarrow (\mathbb {C}, 0)$$\end{document} where Y⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\subset X$$\end{document} is a non-degenerate complete intersection in a toric variety X. As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when (X,0)=(Cn,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,0) = (\mathbb {C}^n,0)$$\end{document} we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in X.
引用
收藏
页码:241 / 269
页数:28
相关论文
共 50 条