New a posteriori error estimates of mixed finite element methods for quadratic optimal control problems governed by semilinear parabolic equations with integral constraint

被引:0
作者
Zuliang Lu
Shaohong Du
Yuelong Tang
机构
[1] Chongqing Three Gorges University,School of Mathematics and Statistics
[2] Beijing Computational Science Research Center,Laboratory for Applied Mathematics
[3] Chongqing Jiaotong University,School of Science
[4] Hunan University of Science and Engineering,Department of Mathematics and Computational Science
来源
Boundary Value Problems | / 2013卷
关键词
error estimates; quadratic optimal control problems; semilinear parabolic equations; mixed finite element methods; integral constraint;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate new L∞(L2) and L2(L2)-posteriori error estimates of mixed finite element solutions for quadratic optimal control problems governed by semilinear parabolic equations. The state and the co-state are discretized by the order one Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L∞(J;L2(Ω))-norm and L2(J;L2(Ω))-norm for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the optimal control problem.
引用
收藏
相关论文
共 44 条
  • [1] Mcknight R(1973)The Ritz-Galerkin procedure for parabolic control problems SIAM J. Control Optim 11 510-524
  • [2] Bosarge W(2002)Error estimates for the numerical approximation of a semilinear elliptic control problem Comput. Optim. Appl 23 201-229
  • [3] Arada N(2009)Error estimates and superconvergence of mixed finite element methods for convex optimal control problems J. Sci. Comput 42 382-403
  • [4] Casas E(2008)A posteriori error estimates for mixed finite element solutions of convex optimal control problems J. Comput. Appl. Math 211 76-89
  • [5] Tröltzsch F(2013)Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem Comput. Math. Appl 66 1498-1513
  • [6] Chen Y(2005)Finite element methods for optimal control problems governed by integral equations and integro-differential equations Numer. Math 101 1-27
  • [7] Huang Y(2001)A posteriori error analysis for convex distributed optimal control problems Adv. Comput. Math 15 285-309
  • [8] Liu W(2003)A posteriori error estimates for optimal control problems governed by Stokes equations SIAM J. Numer. Anal 40 1850-1869
  • [9] Yan N(2006)A posteriori error estimates for adaptive finite element discretizations of boundary control problems J. Numer. Math 14 57-82
  • [10] Chen Y(2001)A posteriori error estimates for convex boundary control problems SIAM J. Numer. Anal 39 73-99